Tier II Operating Permit Application Idaho Fresh-Pak Idaho Falls Facility

Idaho Falls, Idaho

Prepared for:

Idaho Fresh Pak, Inc.

6140 West River Road Idaho Falls, Idaho

June 2007

Project No. 011010

Tier II Operating Permit Application Idaho Fresh-Pak Idaho Falls Facility

Idaho Falls, Idaho

Prepared for:

Idaho Fresh Pak, Inc.

6140 West River Road Idaho Falls, Idaho

Prepared by:

Geomatrix Consultants, Inc.

3500 188th Street SW, Suite 600 Lynnwood, Washington 98037 (425) 921-4000

June 2007

Project No. 011010

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTION	1
2.0	PROC	CESS DESCRIPTION	3
	2.1	Drum dryers (flake lines)	
	2.2	BELT DRYERS (PROCTORS)	
3.0	EMIS	SION SOURCES	5
	3.1	Boilers	
	3.2	Belt Dryers	
	3.2	BIN DRYERS	6
	3.3	FLAKE LINES	7
	3.5	PNEUMATIC CONVEYING EQUIPMENT	7
	3.6	SPACE HEATING/AIR MAKE-UP UNITS	7
	3.7	FUGITIVE EMISSIONS	8
	3.8	STORAGE TANKS	8
4.0	POTE	ENTIALLY APPLICABLE REGULATIONS	9
	4.1	FEDERAL REQUIREMENTS	
		4.1.1 National Emission Standards for Hazardous Air Pollutants	9
		4.1.2 New Source Performance Standards	
		4.1.3 Prevention of Significant Deterioration	
		4.1.4 Title IV Acid Rain Provisions	
		4.1.5 Title V Operating Permit	
		4.1.6 Compliance Assurance Monitoring	
	4.2	STATE REQUIREMENTS	
		4.2.1 Permit to Construct Program	
		4.2.2 Tier II Operating Permit / Consent Order	
		4.2.3 General Requirements	11
5.0	DISP	ERSION MODELING ANALYSIS	
	5.1	DISPERSION MODEL SELECTION	
	5.2	DISPERSION MODEL INPUTS	
		5.2.1 Emission Rates	
		5.2.2 Stack Parameters and Building Configuration	
		5.2.3 Elevation Data and Receptor Network	
		5.2.4 Meteorological Data	15
	5.3	DISPERSION MODEL RESULTS	16

TABLE OF CONTENTS

(Continued)

TABLES

Table 3-1	Facility Air Emission Sources
Table 3-2	Facility-Wide Potential Criteria Pollutant Emissions
Table 3-3	Facility-Wide Potential Hazardous and Toxic Air Pollutant Emissions
Table 4-1	Process Weight Limit Summary
Table 5-1	Idaho Falls Facility Emission Source Parameters
Table 5-2	Idaho Falls Facility Structure Heights
Table 5-3	Idaho Falls Facility Criteria Pollutant Modeling Results

FIGURES

Figure 1-1	Facility Location Map
Figure 2-1	Site Layout
Figure 2-2	Process Flow Diagram
Figure 5-1	Modeling Receptor Locations
Figure 5-2	Windrose for INEEL Idaho Falls Site, 15m Level, 2000-2004
Figure 5-3	AERMET Idaho Falls INEEL Site Land-Use Analysis

APPENDICES

Appendix A	DEQ's Tier II Operating Permit Application Forms
Appendix B	Potential Emission Rate Calculations
Appendix C	Biofuel Technical Data
Appendix D	Potentially Applicable Regulations
Appendix E	Dispersion Modeling Protocol
Appendix F	Modeling Analysis Compact Disk

TIER II OPERATING PERMIT APPLICATION

Idaho Fresh Pak, Inc. Idaho Falls, Idaho

1.0 INTRODUCTION

Idaho Fresh-Pak, Inc. (Fresh-Pak) owns and operates a dehydrated potato production facility near Idaho Falls, Idaho (Idaho Falls facility) (Figure 1-1). Idaho Department of Environmental Quality (DEQ) issued a December 2002 Consent Order directing Fresh-Pak to submit a Tier II air operating permit application addressing a number of emission units that had been constructed without Permits to Construct (PTCs). Fresh-Pak submitted a Tier II operating permit application in June 2003, but DEQ has not acted on that application.

In support of similar permit efforts at its Lewisville facility, Fresh-Pak conducted a number of source tests. Some of these source test results are relevant to emission units at the Idaho Falls facility. In light of those results, Fresh-Pak withdrew the June 2003 Tier II application and is submitting a revised Tier II permit application. As was stated in the request for withdrawal of the application, this revised Tier II application includes proposed emission limits that ensure that facility-wide emissions of any regulated air pollutant will not exceed 100 tons per year. With the proposed limits in place, a Tier I permit will not be required for the Idaho Falls facility.

In this Tier II application, Fresh-Pak proposes to:

- Permit Boiler No. 1 to fire only biofuels, distillate oil, and natural gas
- Limit Boiler No. 1 to 2,640 thousand gallons per year (mgal/yr) of distillate oil. With this limit, facility emissions will be restricted to below Tier I and Title V thresholds
- Incorporate a production cap on the combined "Proctor" belt dryers of 54,000 lb/calendar day with a 59.4 lb/calendar day limit on PM10 emissions
- Incorporate a production cap on the combined flaker lines of 93,600 lb/calendar day with a 141.3 lb/calendar day limit on PM10 emissions

-

¹ Letter from Brad Bowen, Idaho Fresh-Pak, to Daniel Pitman, Idaho DEQ, dated February 7, 2007.

On behalf of Fresh-Pak, Geomatrix Consultants (Geomatrix) has prepared this revised Tier II Operating Permit application. This application presents the information required by IDAPA 58.01.01.402. Appendix A contains DEQ's PTC/Tier II forms. In accordance with IDAPA 58.01.01.402 and IDAPA 58.01.01.123, a signed compliance statement is included in the permit application transmittal letter and on Form GI.

2.0 PROCESS DESCRIPTION

The Idaho Falls facility is located near Idaho Falls in Bonneville County, Idaho. Bonneville County is attainment or unclassifiable for all criteria pollutants. Figure 1-1 displays the site location while Figure 2-1 provides a site layout depicting buildings, stack locations, and facility property lines.

Fresh-Pak is a potato processing company that dehydrates potatoes to make flakes, slices, and dices. The process includes dryers and dehydration lines, which are sources of particulate matter emissions. Description of the potato process is given below. Figure 2-2 provides a process flow diagram of existing operations.

Trucks deliver potatoes to the plant. The potatoes are unloaded into storage, with much of the rock and silt removed prior to storage. Potatoes are taken from the storage cellars for the process using cold water to transport and wash the potatoes. The potatoes are conveyed to a raw sort table where rot, sticks and other debris are removed. Waste products from the processes described are used for cattle feed.

The potatoes enter a steam peeler, where they are exposed to steam for a brief period of time. This loosens the peeling prior to the brush peeling/washing stage. The steam is exhausted and quenched in a water bath. The peel is fully removed by dry and wet scrubbing using revolving brushes. The potatoes are sorted and transported to the flake lines or the belt dryer lines.

2.1 DRUM DRYERS (FLAKE LINES)

In the flake lines, the potatoes are sent to a pre-cooker, which blanches the material. This operation conditions the starch cells. Potatoes are then cooled and water-transported into cookers where they are exposed to steam to fully cook the potato. The potatoes are riced, forced through slots and broken into smaller pieces like mash, and conveyed to the three steamheated drum dryers. Each drum dryer has its own exhaust stack.

The mashed/riced potatoes are spread across the face of the drum dryers with applicator rolls. The steam-heated drum dryers rotate and drive the moisture from the potato cells. The removed moisture is exhausted through the drum dryer (a.k.a. flaker) stacks.

The dried potato sheet is cut off the drum and broken into smaller pieces. Good flake goes to mills where it is cut into desired particle size and density (as required by customers) and air-

transported to product separation cyclones (called "vaculifts"). The vaculift units, driven by electrical fans, move dehydrated product and are also used to control product dust during packaging. The flake is then bagged and palletized and sent to either warehousing or distribution.

2.2 BELT DRYERS (PROCTORS)

Correctly sized potatoes may also be pumped to the belt drying operations where they are sliced or diced, and then blanched. After blanching, the potato pieces are distributed across a large belt conveyor and conveyed through the steam-heated ovens (typically referred to by the brand name "Proctor") for dehydration. The moisture driven from the potato is exhausted to atmosphere.

The slices and dices are sorted into separate packaging lines. The finished potato product is bagged and shipped to either distribution warehousing, customers, or other plants.

3.0 EMISSION SOURCES

All of the emission sources at the Idaho Falls facility are directly associated with dehydrating potato products. As with most facilities of this type, the Idaho Falls facility generates combustion-related emissions associated with the steam-generating and heating units. Additionally, handling, drying, and processing potato products generate particulate emissions.

Table 3-1 lists the Idaho Falls facility's process equipment. Table 3-2 presents calculated criteria pollutant emissions from the entire facility. Further detail regarding the emission calculations can be found in Appendix B. Table 3-3 presents a summary of facility-wide hazardous air pollutant (HAP) and toxic air pollutant (TAP) emissions for regulatory purposes only. The Tier II permit program does not require TAP or HAP ambient air quality compliance demonstrations.

As discussed below, emissions are calculated using a mix of engineering estimates, emission factors from EPA's "AP-42 Compilation of Air Pollution Emission Factors," and source tests on similar units at different facilities. All potential emission sources are addressed in the following sections; those that qualify as insignificant for PTC purposes are as noted.

3.1 BOILERS

Fresh-Pak operates two boilers to provide steam for process units. Boiler No. 1 is rated at 61.6 MMBtu/hr and currently fires only natural gas. Previously, the unit fired residual oil (up to 1.75% sulfur content) in addition to natural gas. Boiler No. 2 is rated at 26.7 MMBtu/hr and fires only natural gas. In this application, Fresh-Pak proposes that Boiler No. 1 be permitted to fire only natural gas, distillate, and biofuels. Boiler No. 2 will still be permitted to fire only natural gas. Neither boiler will be allowed to fire residual oil.

Maximum short-term (lb/hr) boiler emissions are based on the heat input capacity of each boiler. Annual Boiler No. 2 emissions are based on the potential hours of operation (8,760 hours per year) firing natural gas.

Maximum annual emissions for Boiler No. 1 are determined for the boiler potentially burning three fuels. Boiler No. 1 is able to burn natural gas or biofuel or a combination for 8,760 hours per year. However, the boiler could also burn distillate (2,640 mgal/yr) for 5,871 hours per year at the boiler's rated heat input, and fire natural gas and/or biofuels for the rest of the year (i.e., 2,889 hours). Therefore, composite annual emissions are calculated for Boiler No. 1 based on the maximum emission rate on a pollutant-by-pollutant basis between firing natural

gas or biofuels for the entire year or firing distillate for 5,871 hours and firing natural gas or biofuels for the remaining hours.

Emission factors are taken from AP-42 for uncontrolled natural gas boilers (Section 1.2, 7/98), AP-42 for uncontrolled oil-fired boilers (Section 1.3, 9/98), and literature emission factors for biofuel combustion (see Appendix C). "Safety factors" were then applied to the nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM10) emission factors. Table 3-2 identifies maximum potential emissions attributable to firing different fuels in Boiler No. 1 and firing natural gas in Boiler No. 2.

3.2 BELT DRYERS

Fresh-Pak operates three belt dryers (typically referred to by the brand name "Proctor") as part of the Slices and Dices process line. All three Proctors are steam-heated. Fresh-Pak proposes a production limit on the three Proctor belt dryers combined to 54,000 lb/calendar day and a limit on PM₁₀ emissions to 59.4 lb/calendar day.

The emission rate is based on the production limit and stack testing from similar units at the Lewisville facility including a "safety factor" to allow operational flexibility. Table 3-2 identifies hourly and annual PM_{10} emissions based on the proposed limits. For modeling purposes in Table 3-2, belt dryer emissions are listed as divided evenly between the three units; please note that this is not to be construed as a separate limit for each individual unit. Combustion emissions associated with the steam heat are addressed under boiler operations.

3.2 BIN DRYERS

Fresh-Pak operates two bin dryers as part of the Slices and Dices process line. Slices and dice piece products are stored in metal bins and are finish-dried by forcing heated air through the bin. The air is heated using gas burners rated at 2.5 and 3.8 MMBtu/hr. As units that fire exclusively natural gas with a heat input of less than 50 MMBtu/hr, the bin dryers qualify under the Category II Exemption for PTCs per IDAPA 58.01.01.222.02.c. For completeness, the bin dryers are included in this application and their emissions quantified.

The only emissions from the bin dryers are those associated with natural gas combustion; negligible process particulate is expected from these bin dryers. Table 3-2 identifies the combustion emissions from these two units. The bin dryers vent inside the main process building; it is assumed that all bin dryer emissions are released to atmosphere through the building vents.

3.3 FLAKE LINES

Fresh-Pak operates three steam-heated flaker drum dryers in the flaker process lines that dry potato product and exhaust the moisture and process particulate through three individual stacks directly to atmosphere without control devices. All three drum dryers utilize steam from the boilers for heat. Fresh-Pak proposes a production limit on the three flaker drum dryers combined to be 93,600 lb/calendar day and a limit on PM_{10} emissions to 141.3 lb/calendar day.

The emission rate is based on the production limit and stack testing from similar units at the Lewisville facility including a "safety factor". Table 3-2 identifies hourly and annual PM_{10} emissions based on the proposed limits. For modeling purposes in Table 3-2, flaker drum dryer emissions are listed as divided evenly between the three units; please note that this is not to be construed as a separate limit for each individual unit. Combustion emissions associated with the steam heat are addressed under boiler operations.

3.5 PNEUMATIC CONVEYING EQUIPMENT

Potato products are pneumatically conveyed through the various processes using Vaculift cyclones. The emission factors for these cyclones are based on stack testing of similar units at Fresh-Pak's Lewisville facility (plus a margin of safety) and the rated air flow of each cyclone. There are four Vaculift cyclones at the Idaho Falls facility:

- 1. Flaker Lines 1 & 2 Vaculift, used to transport flake from the first two drum dryers to the sizing and inspection process.
- 2. Flaker Line 3 Vaculift, used to transport flake from the third drum dryer to the sizing and inspection process.
- 3. Bagroom Dust Vaculift, used to transport flake to the bagging process and also to remove dust associated with bagging flakes.
- 4. Canline Vaculift, used to transport flake to the packaging process.

3.6 SPACE HEATING/AIR MAKE-UP UNITS

Fresh-Pak uses three natural gas-fired air makeup fan units in the facility: the Fresh Air Make-Up Fan (Waste Plant) rated at 2.5 MMBtu/hr, the Fresh Air Make-Up Fan (Flaker Room) rated at 2.5 MMBtu/hr, and the Fresh Air Make-Up Fan (Bag Room) rated at 5 MMBtu/hr. These units provide heat and prevent condensation during the cold months, and provide fresh air during the warm months. As units that fire exclusively natural gas with a heat input of less than 50 MMBtu/hr, the bin dryers qualify under the Category II Exemption for PTCs per

IDAPA 58.01.01.222.02.c. For completeness, the bin dryers are included in this application and their emissions quantified.

Total emissions from the air makeup fan units are estimated based on the combined rating of the units and AP-42 emission factors for external natural gas combustion including a "safety factor". The air makeup fan units vent inside the buildings; it is conservatively assumed that all exhaust emissions are released to atmosphere through the building vents.

3.7 FUGITIVE EMISSIONS

The only sources of process dust at the facility are the flaker lines, and conveyance of flakes is enclosed and takes place within buildings. The only other possible source of dust is vehicle travel on paved roads. Fresh-Pak believes fugitive dust generated by vehicles to be negligible.

3.8 STORAGE TANKS

Fresh-Pak maintains two fuel storage tanks on-site: the large storage tank with a capacity of 200,000 gallons and the small storage tank with a capacity of 14,400 gallons. To allow facility operational flexibility, emissions are calculated assuming that the entire potential distillate throughput (i.e., 2,640,000 gallons per year) is routed through each individual tank. Emissions are calculated using the TANKS software Version 4.0 based on the AP-42 emission calculation methodology.

4.0 POTENTIALLY APPLICABLE REGULATIONS

The Idaho Falls facility is subject to federal and state air pollution control regulations. This section discusses each applicable regulation and details why other federal and state regulations are not applicable.

4.1 FEDERAL REQUIREMENTS

4.1.1 National Emission Standards for Hazardous Air Pollutants

EPA has established National Emission Standards for Hazardous Air Pollutants (NESHAP) under 40 CFR 63 to regulate HAP emissions from "major sources" of HAP. This regulatory program defines a "major source" as any facility that has the potential to emit more than 10 tons of a single HAP or more than 25 tons of all HAP combined.

Dried potato production does not generate HAPs, so combustion of fossil fuels is the only source of HAPs at the Idaho Falls facility. As detailed in Table 3-3, total HAP emissions from combustion in the bin dryers, the air makeup fan units, and the boilers are 0.93 tpy, which is well below the major source thresholds.

4.1.2 New Source Performance Standards

EPA has established New Source Performance Standards (NSPS) for new, modified, or reconstructed facilities and source categories. Only the facility boilers and storage tanks have potentially applicable NSPS subparts; no other NSPS subparts potentially apply to any other facility equipment.

Boiler No. 1, rated at 61.6 MMBtu/hr, was installed in 1974 and was modified in 1981. Boiler No. 2, rated at 26.7 MMBtu/hr, was installed in 1968 and has not been modified since then. Due to the sizes of the boilers and the dates of construction or modification, the boilers are not subject to NSPS requirements.

NSPS Subpart K applies to petroleum liquid storage tanks that have a capacity greater than 65,000 gallons and were built, modified (as defined by NSPS rules), or reconstructed after June 11, 1973 and prior to May 19, 1978, the subpart's applicability date range. The large storage tank with a capacity of 200,000 gallons was constructed in 1974 and has not been modified since then. Therefore, the large tank is subject to NSPS Subpart K. However, because the large storage tank stores distillate, with both a Reid vapor pressure and a maximum true vapor

pressure of less than 1.0 psia, the large tank has no control requirements and is exempt from any monitoring requirements.

NSPS Subpart Ka applies to storage tanks that have a capacity greater than 40,000 gallons that is used to store petroleum liquids for which construction is commenced after May 18, 1978. NSPS Subpart Kb applies to storage tanks that have a capacity greater than or equal to 19,813 gallons and were built, modified, or reconstructed after July 23, 1984. The small tank was installed in 1981 and has a capacity of 14,400 gallons. As such, the small tank is not subject to any NSPS requirements.

4.1.3 Prevention of Significant Deterioration

Potato processing plants are not designated facilities under 40 CFR 52.21(b); as such, these types of facilities are deemed minor sources for the purposes of the Prevention of Significant Deterioration (PSD) program unless emissions of a regulated pollutant exceeds 250 tons per year. As indicated in Table 3-2, the facility's PTE of regulated pollutants is less than the 250-ton major source threshold. Accordingly, the Idaho Falls facility is not subject to the PSD program.

4.1.4 Title IV Acid Rain Provisions

Title IV of the federal Clean Air Act regulates sulfur dioxide (SO2) and NOx emissions from fossil fuel-fired electrical generation facilities. The Idaho Falls facility's boilers are not used to generate electricity. Accordingly, the Idaho Falls facility is not subject to the Title IV Acid Rain Provisions in the Clean Air Act.

4.1.5 Title V Operating Permit

Title V of the federal Clean Air Act requires facilities with the potential to emit more than 100 tons of a regulated criteria pollutant, 10 tons of a single HAP, or 25 tons of all HAP combined on an annual basis to obtain a Title V Operating Permit. EPA delegated this regulatory program to DEQ. With the emission limits proposed in this application established in a Tier II operating permit, Fresh-Pak's Idaho Falls facility will not be subject to Title V because its annual PTE will not exceed the applicability thresholds.

4.1.6 Compliance Assurance Monitoring

EPA established the Compliance Assurance Monitoring (CAM) program to regulate major facilities with emission sources that employ a control device to maintain compliance with an

enforceable emission limit. As shown in Table 3-2, the Idaho Falls facility is committed to a minor source status. Therefore, this regulatory program does not apply to this facility.

4.2 STATE REQUIREMENTS

4.2.1 **Permit to Construct Program**

DEQ's PTC regulations require all facilities to obtain a PTC or a documented exemption determination before beginning construction of a new source of air pollution or modifying an existing source in a manner that would cause its emissions to increase. This Tier II permit application is intended, in part, to resolve any potential legacy PTC issues at the Idaho Falls facility. Fresh-Pak will submit PTC applications before constructing any new sources or modifying any existing sources such that a PTC is required.

4.2.2 **Tier II Operating Permit / Consent Order**

DEQ issued a Consent Order in December 2002 to Fresh-Pak's Idaho Falls facility. This Consent Order directed Fresh-Pak to pay a fine and submit a Tier II air operating permit to address emission units that had been constructed or modified without PTCs. Fresh-Pak submitted a Tier II permit application in June 2003 as required by the Consent Order.

In support of similar permit efforts at the Lewisville facility, Fresh-Pak conducted a number of source tests. Some of these source test results are relevant to emission units at the Idaho Falls facility. In light of those results, Fresh-Pak withdrew the June 2003 Tier II application² and is submitting a revised Tier II permit application. As was stated in the request for withdrawal of the application, this revised Tier II application includes proposed emission limits that ensure that facility-wide emissions of any regulated air pollutant will not exceed 100 tons per year. As such, a Tier I permit will not be required for the Idaho Falls facility.

4.2.3 **General Requirements**

Several general provisions apply to potato processing operations and the boilers. A more detailed listing of the applicable and inapplicable federal and state air quality regulations, as well as additional information regarding the applicability determinations, is included as Appendix D. The rules with explicit emission limitations are summarized below.

IDAPA 58.01.01.625 limits visible emissions from any source for a period or periods aggregating more than 3 minutes in any 60-minute period to 20% opacity.

² Letter from Brad Bowen, Idaho Fresh-Pak, to Daniel Pitman, Idaho DEQ, dated February 7, 2007.

IDAPA 58.01.01.677 limits particulate matter emissions from the boilers to 0.05 gr/dscf when firing liquid fuels and 0.015 gr/dscf when burning natural gas (both corrected to 3% O₂).

IDAPA 58.01.01.700 limits particulate matter emissions from process equipment based on the date of installation and the throughput of the unit (in pounds per hour). The three proctors and the Flaker Drum Dryers 1 and 2 are all considered existing units under this rule because they were operational before October 1, 1979; the four vaculifts and Flaker Drum Dryer 3 are considered new units because they were installed after that date. However, the same equation for calculating the process weight limit applies to all of the units because the average hourly throughput per unit is less than 9,250 lb/hr for new units and 17,000 lb/hr for existing units. The process weight limit equations are (PW = Process Weight):

Operation after October 1, 1979

- PW < 9,250 lb/hr, $E = 0.045 (PW)^{0.60}$, IDAPA 58.01.01.701(a)
- PW> 9,250 lb/hr, $E = 1.10(PW)^{0.25}$, IDAPA 58.01.01.701(b)

Operation before October 1, 1979

• PW< 17,000 lb/hr, $E = 0.045(PW)^{0.60}$, IDAPA 58.01.01.702(a)

Table 4-1 confirms that all PM_{10} emission rates at Fresh Pak are lower than the process weight PM limit.

IDAPA 58.01.01.728.02 limits the sulfur content of ASTM Grade 2 fuel oil to 0.5 percent by weight.

5.0 DISPERSION MODELING ANALYSIS

Geomatrix applied computer-based dispersion modeling techniques to simulate local dispersion of criteria pollutant emissions from the Idaho Falls facility. Modeling results are used to show the facility does not cause or significantly contribute to a violation of any ambient air quality standard as required in IDAPA 58.01.01.403.02. Geomatrix submitted a dispersion modeling protocol to DEQ on June 20, 2007 prior to conducting the modeling analysis; the protocol is provided as Appendix E. A compact disk containing the air quality modeling input files is included in Appendix F.

The modeling analysis was performed according to the modeling protocol. Any variations from the modeling protocol are discussed below.

5.1 DISPERSION MODEL SELECTION

As of November 9, 2005, AERMOD replaced ISCST3 as the model recommended by the EPA's *Guideline on Air Quality Models* (codified as Appendix W to 40 CFR Part 51) as the preferred dispersion model for complex source configurations and for sources subject to building downwash. As was stated in the protocol, the latest version of the EPA regulatory model AERMOD (version 07026) was used for the dispersion modeling analysis.

5.2 DISPERSION MODEL INPUTS

5.2.1 Emission Rates

A total of fifteen point sources were used to represent the Idaho Falls facility's emission sources. The facility's two bin dryers and three air makeup units (AMUs) are all located in building #3 and vent directly into the building rather than to atmosphere through individual exhaust vents. During the submission of the modeling protocol to DEQ, Geomatrix believed the emissions from the bin dryers and AMUs would be released to atmosphere through the various windows and doors and building #3. However, there are actually three plant fans that pull air from inside the facility and vent the air to atmosphere. For modeling purposes, Geomatrix split the combined bin dryers and AMUs emissions equally between the three plant vent stacks.

Geomatrix completed AERMOD simulations using the maximum potential facility criteria pollutant emission rates for all of the sources at the Idaho Falls facility, as shown in Table 3-2.

5.2.2 Stack Parameters and Building Configuration

Figure 2-1 shows the updated site plan of the Idaho Falls facility with the locations of the fifteen emission point stacks as well as significant structures that could potentially influence downwash from the stacks. Table 5-1 summarizes the release parameters that were used to represent the facility stacks in the modeling analysis, including typical exhaust temperatures and exhaust flowrates provided by Fresh-Pak. Horizontal stack releases are given an exit velocity of 0.001 m/s to represent no plume rise due to momentum and an exit diameter of 0.001 m to prevent the effects of stack-tip downwash on a horizontal stack.

As was stated in the modeling protocol, in addition to the stack locations, the existing building locations and dimensions were provided to AERMOD to assess potential downwash effects. Wind direction-specific building profiles were prepared for modeling by using the EPA's Prime version of the Building Profile Input Program (BPIP PRIME). The facility layout and building elevations, provided by Fresh-Pak, were used to prepare the data input file for BPIP PRIME, which then provides AERMOD with necessary building downwash parameters. Table 5-2 presents the heights of all buildings included in the dispersion modeling analysis.

5.2.3 Elevation Data and Receptor Network

As was stated in the protocol, terrain elevations for receptors and emission sources were prepared using digital elevation models (DEMs) developed by the United States Geological Survey of nine 7.5-minute quadrangles obtained from the internet (http://www.mapmart.com): Ammon, Idaho Falls North, Idaho Falls South, Lewisville, Rigby, Roberts, Shattuck Butte, Ucon, and Woodville. These data have a horizontal spatial resolution of 10 meters (m). The 10-kilometer (km) square simulation domain that was used to assess the Idaho Fall facility potential emission impacts is shown in Figure 1-1.

For the dispersion modeling analysis, three nested receptor grids, each centered on the facility, were developed: an outer grid to the maximum extent of the domain with 250-meter spacing, a 5-km by 5-km nested grid with 100-meter spacing, and a 1-km by 1-km receptor grid with 25-m spacing. Receptors were also located at 10-m intervals along the facility fenceline. The base elevation and hill height scale for each receptor were determined using the EPA's terrain processor, AERMAP (Version 06341). AERMAP generates a receptor output file formatted for use by AERMOD. The modeling receptor grids are shown in Figure 5-1.

5.2.4 Meteorological Data

As was stated in the protocol, Geomatrix used a five-year meteorological database that was constructed using available surface and upper air data for the dispersion modeling analysis. A representative five-year meteorological data set was prepared using available surface and upper air meteorological data. Surface meteorology from the Idaho National Laboratory (INEEL) station in Idaho Falls, Idaho with missing data supplemented by surface observations from the INEEL station in Roberts, Idaho and National Weather Service (NWS) surface observations from Idaho Falls Fanning Field was combined with NWS upper air data from the Boise Airport. A wind rose presenting five years of surface wind speed and wind direction from the Idaho Falls station is shown in Figure 5-2. The wind rose shows predominantly high winds from the southwest and south directions following the Snake River valley and slower winds from the north direction. The average wind speed is 3.24 meters per second (m/s); and calm conditions occur less than 0.07 percent of the time.

Additional meteorological variables and geophysical parameters are required for use in the AERMOD dispersion modeling analysis to estimate the surface energy fluxes and construct boundary layer profiles. Surface characteristics including the surface roughness length, the albedo, and the Bowen ratio will be assigned on a sector-by-sector basis using land-use data within three kilometers of the Idaho Falls meteorological site. The USGS 1992 National Land Cover land-use data set (NLCD92) to be used in the analysis has a 30-meter mesh size and over 30 land-use categories.³ The NLCD92 land-use designations were compared to a current aerial photograph of the three kilometer area surrounding the Idaho Falls meteorological site and the NLCD92 data are appropriate for land-use determinations.

The NLCD92 data were processed using the utilities that accompany the CALPUFF modeling system. Land-use will be characterized using 12 sectors surrounding the facility. Within each sector, a weighted average surface roughness length, albedo, and Bowen ratio are calculated from the characteristics recommended for each land use by the CALPUFF utility program MAKEGEO. Similar to calculations made by the MAKEGEO preprocessor, the arithmetic averages were calculated for the albedo and Bowen ratio, while the geometric average was calculated for the surface roughness of each upwind sector. This land-use analysis and corresponding surface roughness lengths, albedo, and Bowen ratios are shown in Figure 5-3.

-

³ The USGS NLCD92 data set is described and can be accessed at http://landcover.usgs.gov/natllandcover.php

The EPA meteorological program AERMET (Version 06341) was used to combine the hourly surface meteorological observations with twice daily upper air soundings from the Boise airport and derive the necessary meteorological variables for AERMOD. The upper air data were used to estimate the temperature lapse rate aloft and subsequently be used by AERMET to predict the development of the mixed layer height. The Bulk-Richardson option was used to estimate dispersion variables and surface energy fluxes during nocturnal periods, while solar radiation and wind speed are used by AERMET to estimate these same variables during the day.

5.3 DISPERSION MODEL RESULTS

Geomatrix conducted a dispersion modeling analysis to support a Tier II permit application for the Fresh-Pak Idaho Falls facility in Idaho Falls, Idaho. Results from the AERMOD simulations, representative background concentrations, and the applicable National Ambient Air Quality Standards (NAAQS) are shown in Table 5-3. Our analysis indicates that the criteria pollutant concentrations attributable to the Idaho Falls facility, when combined with the representative background concentrations, are in compliance with the applicable NAAQS.

TABLES

TABLE 3-1 FACILITY AIR EMISSION SOURCES

Fresh-Pak Idaho Falls, Idaho

Source	Date Install / Modified	Manufacturer	Rating	Capacity	Fuel
Boiler No.1	1974 / 1981	Cleaver Brooks	61.6 MMBtu		Nat. Gas, Distillate, Biofuel
Boiler No.2	1968	Cleaver Brooks	26.7 MMBtu		Nat. Gas
Bin Dryer 1	1971	King	2.5 MMBtu		Nat. Gas
Bin Dryer 2	1971		3.8 MMBtu		Nat. Gas
Fresh Air Makeup Fan Unit (Waste Plant)	1971		2.5 MMBtu		Nat. Gas
Fresh Air Makeup Fan Unit (Flaker Room)	1971		2.5 MMBtu		Nat. Gas
Fresh Air Makeup Fan Unit (Bag Room)	1971		5 MMBtu		Nat. Gas
Flaker Drum Dryer 1	1974	Blawknox		54,000 lb	Steam
Flaker Drum Dryer 2	1974	Blawknox		per calendar	Steam
Flaker Drum Dryer 3	2001	Idaho Steel		day	Steam
Proctor 1	1965	Proctor & Schwartz		93,600 lb	Steam
Proctor 2	1965	Proctor & Schwartz		per calendar	Steam
Proctor 3	1965	Proctor & Schwartz		day	Steam
Flaker Lines 1 & 2 Vaculift	1981				
Flaker Lines 3 Vaculift	1995				
Bagroom Vaculift	1995			<u> </u>	<u> </u>
Canline Vaculift	2002				
Large Tank	1974			200,000 gal	
Small Tank	1981			14,400 gal	

TABLE 3-2. FACILITY-WIDE POTENTIAL CRITERIA POLLUTANT EMISSIONS

	NOx		CO		SO2		PM10		VOC	
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Boiler 1	13.5	52.9	10.3	45.3	31.9	93.9	5.1	22.3	0.3	1.5
Boiler 2	4.0	17.5	4.5	19.6	0.02	0.1	0.4	1.8	0.15	0.6
Belt dryer 1 (Proctor 1)							0.8	3.6		
Belt dryer 2 (Proctor 2)							0.8	3.6		
Belt dryer 3 (Proctor 3)							0.8	3.6		
Flaker line 1							2.0	8.6		
Flaker line 2							2.0	8.6		
Flaker line 3			-				2.0	8.6		
Flaker lines 1& 2 vaculift							0.2	0.7		
Flaker line 3 vaculift							0.1	0.6		
Bin Dryer 1	0.4	1.6	0.4	1.8	0.002	0.007	0.04	0.2	0.01	0.06
Bin Dryer 2	0.6	2.5	0.6	2.8	0.002	0.01	0.06	0.3	0.02	0.09
Bagroom dust vaculift							0.08	0.4		
Canline vaculift							0.07	0.3		
Fresh Air Make-Up Fan (Waste Plant)	0.4	1.6	0.4	1.8	0.002	0.007	0.04	0.2	0.01	0.06
Fresh Air Make-Up Fan (Flaker Room)	0.4	1.6	0.4	1.8	0.002	0.007	0.04	0.2	0.01	0.06
Fresh Air Make-Up Fan (Bag Room)	0.8	3.3	0.8	3.7	0.003	0.01	0.08	0.3	0.03	0.1
Large Tank (200,000 gallons)									0.007	0.03
Small Tank (14,400 gallons)									0.002	0.007
Total =	19.9	81.2	17.6	77.0	31.9	94.0	14.6	63.8	0.6	2.6

 $\label{eq:table 3-3} \textbf{FACILITY-WIDE POTENTIAL TAP AND HAP EMISSIONS}^{(A)}$

Pollutant	Distillate Oil Emission Factor b (lb/10³ gal)	Natural Gas Emission Factor ^c (lb/MMscf)	Boiler No. 1 Emissions (lb/yr)	Boiler No. 2 Emissions (lb/yr)	Bin Dryer Emissions (lb/yr)	Air Makeup Units Emissions (lb/yr)	Total Emissions (tpy)	HAP?	TAP?
2-Methylnaphthalene		2.4E-05	1.30E-02	5.61E-03	1.32E-03	2.10E-03	1.10E-05	No	No
3-Methylchloranthrene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	Yes
7,12-Dimethylbenz(a)anthracene		1.6E-05	8.63E-03	3.74E-03	8.83E-04	1.40E-03	7.33E-06	No	No
Acenaphthene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Acenaphthylene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Anthracene		2.4E-06	1.30E-03	5.61E-04	1.32E-04	2.10E-04	1.10E-06	No	No
Arsenic	5.5E-07	2.0E-04	1.08E-01	4.68E-02	1.10E-02	1.75E-02	9.16E-05	Yes	Yes
Barium		4.4E-03	2.37E+00	1.03E+00	2.43E-01	3.85E-01	2.02E-03	No	Yes
Benz(a)anthracene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Benzene		2.1E-03	1.13E+00	4.91E-01	1.16E-01	1.84E-01	9.62E-04	Yes	Yes
Benzo(a)pyrene		1.2E-06	6.48E-04	2.81E-04	6.62E-05	1.05E-04	5.50E-07	No	Yes
Benzo(b)fluoranthene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Benzo(g,h,i)perylene		1.2E-06	6.48E-04	2.81E-04	6.62E-05	1.05E-04	5.50E-07	No	No
Benzo(k)fluoranthene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Beryllium	4.1E-07	1.2E-05	6.48E-03	2.81E-03	6.62E-04	1.05E-03	5.50E-06	Yes	Yes
Butane		2.1E+00	1.13E+03	4.91E+02	1.16E+02	1.84E+02	9.62E-01	No	No
Cadmium	4.1E-07	1.1E-03	5.94E-01	2.57E-01	6.07E-02	9.64E-02	5.04E-04	Yes	Yes
Chromium III ^e	2.1E-07	7.0E-04	3.78E-01	1.64E-01	3.86E-02	6.13E-02	3.21E-04	Yes	Yes
Chromium VI ^e	2.1E-07	7.0E-04	3.78E-01	1.64E-01	3.86E-02	6.13E-02	3.21E-04	Yes	Yes
Chrysene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Cobalt		8.4E-05	4.53E-02	1.96E-02	4.64E-03	7.36E-03	3.85E-05	Yes	Yes
Copper	8.2E-07	8.5E-04	4.59E-01	1.99E-01	4.69E-02	7.45E-02	3.89E-04	No	Yes
Dibenzo(a,h)anthracene		1.2E-06	6.48E-04	2.81E-04	6.62E-05	1.05E-04	5.50E-07	No	No
Dichlorobenzene		1.2E-03	6.48E-01	2.81E-01	6.62E-02	1.05E-01	5.50E-04	No	No
Ethane		3.1E+00	1.67E+03	7.25E+02	1.71E+02	2.72E+02	1.42E+00	No	No
Fluoranthene		3.0E-06	1.62E-03	7.02E-04	1.66E-04	2.63E-04	1.37E-06	No	No
Fluorene		2.8E-06	1.51E-03	6.55E-04	1.55E-04	2.45E-04	1.28E-06	No	No

Pollutant	Distillate Oil Emission Factor ^b (lb/10 ³ gal)	Natural Gas Emission Factor ^c (lb/MMscf)	Boiler No. 1 Emissions (lb/yr)	Boiler No. 2 Emissions (lb/yr)	Bin Dryer Emissions (lb/yr)	Air Makeup Units Emissions (lb/yr)	Total Emissions (tpy)	HAP?	TAP?
Formaldehyde	6.1E-02	7.5E-02	1.74E+02	1.75E+01	4.14E+00	6.57E+00	1.01E-01	Yes	Yes
Hexane		1.8E+00	9.71E+02	4.21E+02	9.93E+01	1.58E+02	8.25E-01	Yes	Yes
Indeno(1,2,3-cd)pyrene		1.8E-06	9.71E-04	4.21E-04	9.93E-05	1.58E-04	8.25E-07	No	No
Lead	1.2E-06		3.26E-03	0.00E+00	0.00E+00	0.00E+00	1.63E-06	Yes	No
Manganese	8.2E-07	3.8E-04	2.05E-01	8.89E-02	2.10E-02	3.33E-02	1.74E-04	Yes	Yes
Mercury	4.1E-07	2.6E-04	1.40E-01	6.08E-02	1.43E-02	2.28E-02	1.19E-04	Yes	Yes
Molybdenum		1.1E-03	5.94E-01	2.57E-01	6.07E-02	9.64E-02	5.04E-04	No	Yes
Naphthalene		6.1E-04	3.29E-01	1.43E-01	3.37E-02	5.34E-02	2.79E-04	Yes	Yes
Nickel	4.1E-07	2.1E-03	1.13E+00	4.91E-01	1.16E-01	1.84E-01	9.62E-04	Yes	Yes
Pentane		2.6E+00	1.40E+03	6.08E+02	1.43E+02	2.28E+02	1.19E+00	No	Yes
Phenanathrene		1.7E-05	9.17E-03	3.98E-03	9.38E-04	1.49E-03	7.79E-06	No	No
Polyaromatic Hydrocarbons ^f		1.1E-05	6.15E-03	2.67E-03	6.29E-04	9.99E-04	5.22E-06	No	Yes
Propane		1.6E+00	8.63E+02	3.74E+02	8.83E+01	1.40E+02	7.33E-01	No	No
Pyrene		5.0E-06	2.70E-03	1.17E-03	2.76E-04	4.38E-04	2.29E-06	No	No
Selenium	2.1E-06	2.4E-05	1.30E-02	5.61E-03	1.32E-03	2.10E-03	1.10E-05	Yes	Yes
Toluene		3.4E-03	1.83E+00	7.95E-01	1.88E-01	2.98E-01	1.56E-03	Yes	Yes
Vanadium		2.3E-03	1.24E+00	5.38E-01	1.27E-01	2.01E-01	1.05E-03	No	Yes
Zinc	5.5E-07	2.9E-02	1.56E+01	6.78E+00	1.60E+00	2.54E+00	1.33E-02	No	Yes
Total HAP =			1152	441	104	165	0.931		

^a This summary table is intended for regulatory applicability purposes only.

^b AP-42 Section 1.3, September 1998, Tables 1.3-8 & 1.3-10 - Distillate Oil Combustion.

^c AP-42 Section 1.4, July 1998, Natural Gas Combustion.

^d Based on worst-case emissions between firing all natural gas and firing maximum amount of distillate fuel and the remaining firing natural gas.

^e AP-42 provides a chromium emission factor for natural gas- and oil-fired external combustion, but does not include guidance for partitioning emissions between the carcinogenic chromium VI (hexavalent chromium) and the chromium III (trivalent chromium). In the EPA's Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units – Final Report to Congress (EPA-453/R-98-004a), chromium emissions from natural gas- and oil-fired units are not included. However, data on speciation of chromium were available from 11 coal- and oil-fired test sites. From these limited data, EPA estimated that the average chromium VI from the coal-fired utilities was 11 percent, and the average from oil-fired utilities was 18 percent. We have conservatively assumed 50 percent of the chromium emissions are chromium VI and the other 50 percent are chromium III.

Polyaromatic Hydrocarbons are the sum of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, chrysene, indenol(1,2,3,-cd)pyrene, benzo(a)pyrene.

TABLE 4-1

PROCESS WEIGHT LIMIT SUMMARY

Unit	Installation Date	Allowable Throughput ¹ (lb/day)	Average Throughput ² (lb/hr/unit)	Process Weight Rule ³	Process Weight Limit (lb/hr)	Actual Process Weight (lb/hr)
Proctor 1	1965		750	702a	2.39	0.83
Proctor 2	1965	54,000	750	702a	2.39	0.83
Proctor 3	1965		750	702a	2.39	0.83
Flaker Drum Dryer 1	1974		1,300	702a	3.32	1.96
Flaker Drum Dryer 2	1974	93,600	1,300	702a	3.32	1.96
Flaker Drum Dryer 3	2001		1,300	701a	3.32	1.96
Flaker lines 1& 2 vaculift	1981	57,600	2,400	701a	4.80	0.17
Flaker line 3 vaculift	1995	36,000	1,500	701a	3.62	0.14
Bagroom dust vaculift	1995	93,600	3,900	701a	6.42	0.08
Canline vaculift	2002	93,600	3,900	701a	6.42	0.07

- This is the allowable throughput for all units combined (e.g., the sum of the throughput of all 3 proctor belt dryers must be less than 54,000 lb/day).
- Assume the total allowable throughput for all units is processed evenly between each unit. The average hourly throughput is divided by the number of units (e.g., each proctor belt dryer's average unit throughput = allowable throughput \div 24 \div 3 = 54,000 \div 24 \div 3 = 750 lb/hr/unit.
- 3 The process weight rule and equations are under IDAPA 58.01.01.700-702.

TABLE 5-1

IDAHO FALLS FACILITY EMISSION SOURCE PARAMETERS

Source	Stack Exit Direction	Height (ft)	Actual Inside Diameter ¹ (ft)	Model Stack Diameter ² (m)	Exit Velocity ³ (m/s)	Temperature (°F)
Boiler #1	Vertical	39	3.42	1.04	8.44	390
Boiler #2	Vertical	39	2.58	0.79	5.70	390
Proctor Dryer #1	Horizontal	28	3.0	0.001	0.001	180
Proctor Dryer #2	Horizontal	28	3.0	0.001	0.001	180
Proctor Dryer #3	Horizontal	28	3.0	0.001	0.001	180
Flaker Drum Dryer #1	Vertical	33	3.75	1.14	39.71	110
Flaker Drum Dryer #2	Vertical	34	3.75	1.14	39.71	110
Flaker Drum Dryer #3	Vertical	34	3.75	1.14	35.87	109
Flaker Lines 1 & 2 Vaculift	Horizontal	30	0.8	0.001	0.001	110
Flaker Line 3 Vaculift	Horizontal	30	0.8	0.001	0.001	110
Bagroom Vaculift	Horizontal	30	0.88	0.001	0.001	110
Canline Vaculift	Horizontal	28	0.8	0.001	0.001	Ambient
Plant 1 ⁴	Horizontal	28	2.5	0.001	0.001	105
Plant 2 ⁴	Horizontal	28	2.5	0.001	0.001	105
Plant 3 ⁴	Horizontal	28	2.5	0.001	0.001	105

¹ The Vaculift stacks have rectangular cross-sections; the diameters shown are for a circular cross-section with an equivalent area.

² For all source release points that are oriented horizontally, the exit diameters are set to 0.001 meters to prevent stack tip downwash effects.

³ For all source release points that are oriented horizontally, the exit velocities are set to 0.001 m/s to eliminate plume rise due to exhaust momentum.

⁴ The Plant sources are building air vents which include emissions from the Bin Dryers 1 and 2; the Waste Plant AMU; the Flaker Room AMU; and the Bag Room AMU.

TABLE 5-2

IDAHO FALLS FACILITY STRUCTURE HEIGHTS

Tier II Operating Permit Application Idaho Falls, Idaho

	Height				
Structure	(feet)	(meters)			
Building #1	19	5.79			
Building #2	19	5.79			
Building #3	24	7.32			
Building #4	26	7.92			

TABLE 5-3

IDAHO FALLS FACILITY CRITERIA POLLUTANT MODELING RESULTS

Tier II Operating Permit Application Idaho Falls, Idaho

Concentrations are in micrograms per cubic meter (µg/m³)

Pollutant	Period	Maximum Idaho Falls Contribution	Background Concentration ^a	Max Idaho Falls plus Background	NAAQS
	24 Hour ^b	49	73	122	150
PM10	Annual	12	26	38	50
NO2 ^c	Annual	13	17	30	100
	3 Hour	484	34	518	1,300
SO2	24 Hour	81	26	107	365
	Annual	15	8	23	80
CO	1 Hour	901	3,600	4,501	40,000
	8 Hour	194	2,300	2,494	10,000

NAAQS = National Ambient Air Quality Standards

- a Background concentrations for the modeling analysis were taken from the *IDEQ Background Concentrations for Use in New Source Review Dispersion Modeling* memo, for Rural Agricultural Regional Category (March 14, 2003).
- b Maximum 24-hour PM10 concentration is the 6th highest concentration over the five years of modeling.
- c Maximum NO2 concentration calculated by multiplying the maximum NOx concentration by 0.75.

FACILITY LOCATION MAP
Tier II Operating Permit Application
Idaho Falls, Idaho

Project No. 011010

Figure **1-1**

MODELING RECEPTOR LOCATIONS Tier II Operating Permit Application Idaho Falls, Idaho Project No. 011010

Figure **5-1**

WINDROSE FOR INEEL IDAHO FALLS SITE, 15M LEVEL, 2000-2004 Tier II Operating Permit Application Idaho Falls, Idaho Project No. 11010

Figure **5-2**

AERMET IDAHO FALLS INEEL SITE LAND-USE ANALYSIS
Tier II Operating Permit Application
Idaho Falls, Idaho

11010

Figure **5-3**

APPENDICES

APPENDIX A

DEQ's Tier II Operating Permit Forms

Applicants, please see instructions on page 2 before filling out the form.

CC)MPAN'	Y NA	ME, FACILITY NAM NUMBER	IE, AND FACILIT	Y ID					
1. Compan	1. Company Name Idaho Fresh-Pak, Inc.									
2. Facility Name Idaho Falls facility 3. Facility ID No. 019-00038										
Brief Project Description - One sentence or less Tier II Operating Permit Application										
Mod	lify Existing uired by Enf	New Source:	Source at Existing Facility Permit No.: Date Issuent Action: Case No.:	Unpermitted Existing	Source					
6. Minor PTC Major PTC FORMS INCLUDED										
Included N/A Forms DEC										
\boxtimes		Form	Form GI – Facility Information							
\boxtimes		Form	Form EU0 – Emissions Units General (17 forms attached)							
	\boxtimes	Form Pleas	Form EU1 - Industrial Engine Information Please Specify number of forms attached:							
			orm EU2 - Nonmetallic Mineral Processing Plants ease Specify number of forms attached:							
	\boxtimes		EU3 - Spray Paint Booth Inform e Specify number of forms attac							
	\boxtimes	Form Pleas	EU4 - Cooling Tower Informatio e Specify number of forms attac	n hed:						
\boxtimes			EU5 – Boiler Information e Specify number of forms attac	hed: <u>2</u>						
	\boxtimes		HMAP – Hot Mix Asphalt Plant e Specify number of forms attac	hed:						
	\boxtimes		CBP - Concrete Batch Plant e Specify number of forms attac	hed:						
	\boxtimes	Form	BCE - Baghouses Control Equip	oment						
	\boxtimes	Form	SCE - Scrubbers Control Equip	ment						
\boxtimes			s EI-CP1-EI-CP4 - Emissions In I workbook, all 4 worksheets)	ventory– criteria pollutants						
\boxtimes		PP –	Plot Plan (See Figure 2-1 of the	application)						
\boxtimes		Forms	s MI1-MI4 – Modeling (Excel wo	rkbook, all 4 worksheets)						
\boxtimes		Form	Form FRA – Federal Regulation Applicability							

DEQ Staff, please see instructions for handling this form on page 3.

DEQ USE ONLY
Date Received
Project Number
Daymont / Food Included 2
Payment / Fees Included?
Yes No No
Check Number

Please see instructions on page 2 before filling out the form.

All information is required. If information is missing, the application will not be processed.

	IDENTIFICATION									
1. Company Name	Idaho Fresh-Pak, Inc.									
2. Facility Name (if different than #1)	Idaho Falls facility									
3. Facility I.D. No.	019-00038									
4. Brief Project Description:	Tier II Operating Permit Application									
	FACILITY INFORMATION									
5. Owned/operated by: (√ if applicable)	Federal government County government State government City government									
6. Primary Facility Permit Contact Person/Title	Mike Eames, Plant Engineer									
7. Telephone Number and Email Address	(208)754-8152, MEames@idahoan.com	<u> </u>								
8. Alternate Facility Contact Person/Title										
9. Telephone Number and Email Address										
10. Address to which permit should be sent	P.O. Box 130, 529 N. 3500 E.									
11. City/State/Zip	Lewisville, ID. 83431									
12. Equipment Location Address (if different than #9)	6140 West River Road									
13. City/State/Zip	Idaho Falls, Idaho 83402									
14. Is the Equipment Portable?	☐ Yes ⊠ No									
15. SIC Code and NAISC Code	sic: 2034 Secondary Sic (if any): NAICS: 311423									
16. Brief Business Description and Principal Product	Dehydrated Potato Processing									
17. Identify any adjacent or contiguous facility that this company owns and/or operates	Not Applicable									
	PERMIT APPLICATION TYPE									
18. Specify Reason for Application	 New Facility Modify Existing Source: Permit No.: Date Issued: Unpermitted Existing Source: Required by Enforcement Action: Case No.: 									
	CERTIFICATION									
IN ACCORDANCE WITH IDAPA 58.01.01.123 (R AFTER REASONABLE INQUIRY,	RULES FOR THE CONTROL OF AIR POLLUTION IN IDAHO), I CERTIFY BASED ON INFORMATION AND BELIE , THE STATEMENTS AND INFORMATION IN THE DOCUMENT ARE TRUE, ACCURATE, AND COMPLETE.	EF FORMED								
19. Responsible Official's Name/Title	Brad Bowen, Vice-President									
20. RESPONSIBLE OFFICIAL SIGNATURE	Date: 20 T									
	Date: 028 June									

IDENTIFICATION								
Company Name: Facility Name: Facility ID No:								
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038						00038		
Brief Project Description: Tier II Operating Permit Application								
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION								
1. Emissions Unit (EU) Name:	AIR MAK	EUP UNIT -	BAG ROOM					
2. EU ID Number:	AMU-BR							
3. EU Type:	☐ New S		Unpermitted Exermitted Exermitted Source	kisting Source Previous Permi	t#: Da	ate Issued:		
4. Manufacturer:	UNKNOV	VN						
5. Model:	UNKNOV	VN						
6. Maximum Capacity:	5 MMBT	J/HR - NATU	RAL GAS-FIRE)				
7. Date of Construction:	1971							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit?	⊠ No	☐ Yes If Ye	s, Complete the	following section.	If No, go to line	18.		
		EMISSION PROPERTY OF THE PROPE	IS CONTROL	. EQUIPMEN				
10. Control Equipment Name and ID:								
11. Date of Installation:			12. Date of Mod	lification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
units(s) involved?:	15. Is operating schedule different than emission units(s) involved?:							
16. Does the manufacturer guarantee t efficiency of the control equipment?	he control	□Yes □No	(If yes, attach	and label manufa	cturer guarante	e)		
	-			Pollutant Conti	rolled			
	PM	PM10	SO ₂	NOx	VOC	CO		
Control Efficiency								
17. If manufacturer's data is not availab	ole, attach a se	eparate sheet	of paper to provi	de the control eq	uipment design	specifications and performance data		
to support the above mentioned contro	l efficiency.							
EMISSIO	N UNIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year,	or other)		
18. Actual Operation	7200 HOUF	RS/YEAR						
19. Maximum Operation	8760 HOUF	RS/YEAR						
		RI	EQUESTED L	IMITS				
20. Are you requesting any permit lin	nits?	es 🛛	No (If Yes, che	ck all that apply b	elow)			
☐ Operation Hour Limit(s):								
☐ Production Limit(s):								
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testing	g Pleas	se attach all r	elevant stack test	ing summary rep	orts			
Other:			-					
21. Rationale for Requesting the Lim	it(s):							

IDENTIFICATION									
Company Name: Facility Name: Facility ID No:									
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038									
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
1. Emissions Unit (EU) Name:	AIR MAK	AIR MAKEUP UNIT - FLAKER ROOM							
2. EU ID Number:	AMU-FR	MU-FR							
3. EU Type:		☐ New Source ☐ Unpermitted Existing Source ☐ Modification to a Permitted Source Previous Permit #: Date Issued:							
4. Manufacturer:	UNKNOV	VN							
5. Model:	UNKNOV	VN							
6. Maximum Capacity:	2.5 MMB	TU/HR - NAT	URAL GAS-FIRE	ED					
7. Date of Construction:	1971								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit			•	following section. I	f No, go to line 1	8.			
		EMISSION	IS CONTROL	. EQUIPMENT					
10. Control Equipment Name and ID:			T						
11. Date of Installation:			12. Date of Mod	lification (if any):					
13. Manufacturer and Model Number:	13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:									
units(s) involved?:	15. Is operating schedule different than emission units(s) involved?:								
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufac	turer guarantee)				
Cincional of the dentity against the control of the	<u>L</u>			Pollutant Contro	lled				
	PM	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not availa	able, attach a se	parate sheet	of paper to provi	de the control equ	ipment design sp	pecifications and performance data			
to support the above mentioned control	ol efficiency.								
EMISSIO	ON UNIT OP	ERATING	SCHEDULE	(hours/day, h	ours/year, or	r other)			
18. Actual Operation	7200 HOUF	RS/YEAR							
19. Maximum Operation	8760 HOUF	RS/YEAR							
		RE	EQUESTED L	IMITS					
20. Are you requesting any permit li	imits?	es 🛛 I	No (If Yes, ched	ck all that apply be	low)				
☐ Operation Hour Limit(s):									
☐ Production Limit(s):									
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testin	ng Pleas	e attach all re	elevant stack test	ing summary repo	rts				
Other:									
21. Rationale for Requesting the Lir	mit(s):								

IDENTIFICATION									
Company Name: Facility Name: Facility ID No:									
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	00038			
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
1. Emissions Unit (EU) Name:	AIR MAKI	EUP UNIT - \	WASTE PLANT						
2. EU ID Number:	AMU-WP	MU-WP							
	☐ New S		Unpermitted Exermitted Source -	isting Source - Previous Permi	t #: Dat	e Issued:			
4. Manufacturer:	UNKNOW	/N							
5. Model:	UNKNOW	/N							
6. Maximum Capacity:	2.5 MMB1	ΓU/HR - NAT	URAL GAS-FIRE	ED					
7. Date of Construction:	1971								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit?	⊠ No [☐ Yes If Ye	s, Complete the t	following section.	If No, go to line	18.			
		EMISSION	S CONTROL	EQUIPMEN					
10. Control Equipment Name and ID:									
11. Date of Installation:			12. Date of Mod	lification (if any):					
13. Manufacturer and Model Number:									
14. ID(s) of Emission Unit Controlled:									
15. Is operating schedule different than emis units(s) involved?:		Yes	□ No						
16. Does the manufacturer guarantee the coefficiency of the control equipment?	ontrol	□Yes □No	(If yes, attach	and label manufa	cturer guarantee				
				Pollutant Contr	olled				
PI	М	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not available, at	ttach a se	parate sheet	of paper to provi	de the control eq	uipment design s	pecifications and performance data			
to support the above mentioned control effic									
EMISSION U	NIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, o	r other)			
18. Actual Operation 72	00 HOUR	S/YEAR							
19. Maximum Operation 87	60 HOUR	S/YEAR							
		RE	QUESTED L	IMITS					
20. Are you requesting any permit limits?	☐ Ye	es 🛛 N	No (If Yes, chec	ck all that apply b	elow)				
☐ Operation Hour Limit(s):									
☐ Production Limit(s):									
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testing	Please	e attach all re	elevant stack test	ing summary rep	orts				
☐ Other:									
21. Rationale for Requesting the Limit(s):									

IDENTIFICATION									
Company Name: Facility Name: Facility ID No:									
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038									
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
1. Emissions Unit (EU) Name:	ions Unit (EU) Name: BIN DRYER #1								
2. EU ID Number:	BIN1	IN1							
		New Source ⊠ Unpermitted Existing Source ☐ Modification to a Permitted Source Previous Permit #: Date Issued:							
4. Manufacturer:	KING								
5. Model:	UNKNOW	۷N							
6. Maximum Capacity:	2.5 MMB	TU/HR - NAT	URAL GAS-FIRE	D					
7. Date of Construction:	1971								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit?	⊠ No [☐ Yes If Ye	s, Complete the t	following section.	If No, go to line 1	8.			
		EMISSION	IS CONTROL	EQUIPMENT					
10. Control Equipment Name and ID:									
11. Date of Installation:			12. Date of Mod	lification (if any):					
13. Manufacturer and Model Number:									
14. ID(s) of Emission Unit Controlled:									
15. Is operating schedule different than emis units(s) involved?:		Yes	□ No						
16. Does the manufacturer guarantee the coefficiency of the control equipment?	ontrol	□Yes □No	(If yes, attach	and label manufa	cturer guarantee)				
			T	Pollutant Contr	olled	1			
PI	М	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not available, at	ttach a se	parate sheet	of paper to provi	de the control eq	uipment design s	pecifications and performance data			
to support the above mentioned control effic	iency.								
EMISSION U	NIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, o	r other)			
18. Actual Operation 72	00 HOUR	RS/YEAR							
19. Maximum Operation 87	60 HOUR	RS/YEAR							
		RE	QUESTED L	IMITS					
20. Are you requesting any permit limits?	□ Y	es 🛛 🗎 1	No (If Yes, chec	k all that apply b	elow)				
☐ Operation Hour Limit(s):									
☐ Production Limit(s):									
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testing	Pleas	e attach all re	elevant stack test	ing summary rep	orts				
☐ Other:									
21. Rationale for Requesting the Limit(s):									

IDENTIFICATION														
Company Name: Facility Name: Facility ID No:														
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	0038								
Brief Project Description: Tier II Operating Permit Application														
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION														
1. Emissions Unit (EU) Name:	BIN DRYER #2													
2. EU ID Number:	BIN2	N2												
3. EU Type:		New Source Unpermitted Existing Source Modification to a Permitted Source Previous Permit #: Date Issued:							New Source					
4. Manufacturer:	UNKNOW	۷N												
5. Model:	UNKNOW	۷N												
6. Maximum Capacity:	3.8 MMB	TU/HR - NAT	URAL GAS-FIRE	:D										
7. Date of Construction:	1971													
8. Date of Modification (if any)														
9. Is this a Controlled Emission Unit?	⊠ No [☐ Yes If Ye	s, Complete the f	ollowing section.	If No, go to line 1	8.								
		EMISSION	S CONTROL	EQUIPMENT										
10. Control Equipment Name and ID:														
11. Date of Installation:			12. Date of Mod	ification (if any):										
13. Manufacturer and Model Number:														
14. ID(s) of Emission Unit Controlled:														
15. Is operating schedule different than emisunits(s) involved?:		Yes	□ No											
16. Does the manufacturer guarantee the coefficiency of the control equipment?	ontrol	□Yes □No	(If yes, attach	and label manufa	cturer guarantee)									
				Pollutant Contr	olled	T								
P	М	PM10	SO ₂	NOx	VOC	СО								
Control Efficiency														
17. If manufacturer's data is not available, a	ttach a se	parate sheet	of paper to provi	de the control eq	uipment design sp	pecifications and performance data								
to support the above mentioned control effic														
EMISSION U	NIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, or	other)								
18. Actual Operation 72	00 HOUR	RS/YEAR												
19. Maximum Operation 87	60 HOUR	RS/YEAR												
		R	QUESTED L	IMITS										
20. Are you requesting any permit limits?	☐ Ye	es 🛛 🗈 1	No (If Yes, chec	k all that apply b	elow)									
Operation Hour Limit(s):														
☐ Production Limit(s):														
☐ Material Usage Limit(s):														
☐ Limits Based on Stack Testing	Pleas	e attach all re	elevant stack test	ing summary rep	orts									
☐ Other:														
21. Rationale for Requesting the Limit(s):														

IDENTIFICATION								
Company Name:		Facility I	Name:		Faci	lity ID No:		
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038						00038		
Brief Project Description: Tier II Operating Permit Application								
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION								
Emissions Unit (EU) Name:	BAG RO	OM VACULIF	Ŧ					
2. EU ID Number:	BR-VL							
3. EU Type:	☐ New S		Unpermitted Exermitted Exermitted Source	kisting Source Previous Permi	t#: Da	ate Issued:		
4. Manufacturer:	VACULIF	-T						
5. Model:	UNKNOV	VN						
6. Maximum Capacity:	550 CFM	1						
7. Date of Construction:	1995							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit	? No	☐ Yes If Ye	s, Complete the	following section.	If No, go to line	18.		
		EMISSION	IS CONTROL	. EQUIPMEN				
10. Control Equipment Name and ID:			T					
11. Date of Installation:			12. Date of Mod	lification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
units(s) involved?:	15. Is operating schedule different than emission units(s) involved?:							
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufa	cturer guarante	e)		
	-			Pollutant Conti	rolled	_		
	PM	PM10	SO ₂	NOx	VOC	CO		
Control Efficiency								
17. If manufacturer's data is not availa	able, attach a se	eparate sheet	of paper to provi	de the control eq	uipment design	specifications and performance data		
to support the above mentioned control	ol efficiency.							
EMISSIC	ON UNIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, o	or other)		
18. Actual Operation	7200 HOUF	RS/YEAR						
19. Maximum Operation	8760 HOUF	RS/YEAR						
		RI	QUESTED L	IMITS				
20. Are you requesting any permit li	mits?	'es ⊠ I	No (If Yes, ched	ck all that apply b	elow)			
☐ Operation Hour Limit(s):								
☐ Production Limit(s):								
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testin	ng Pleas	se attach all r	elevant stack test	ing summary rep	orts			
Other:								
21. Rationale for Requesting the Lin	nit(s):							

,			DENTIFICAT	ION					
Commonw Nome		Facility Name: Facility ID No:				n. ID No.			
Company Name:		-							
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038						00038			
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
Emissions Unit (EU) Name:	CANLIN	NLINE VACULIFT							
2. EU ID Number:	CL-VL	-VL							
3. EU Type:		New Source							
4. Manufacturer:	VACUL	IFT							
5. Model:	UNKNO	NWN							
6. Maximum Capacity:	450 CF	М							
7. Date of Construction:	2002								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit?	⊠ No	☐ Yes If Ye	s, Complete the	following section	. If No, go to line 1	8.			
		EMISSION	S CONTROL	. EQUIPMEN	T				
10. Control Equipment Name and ID:									
11. Date of Installation:			12. Date of Mod	dification (if any):					
13. Manufacturer and Model Number:									
14. ID(s) of Emission Unit Controlled:									
15. Is operating schedule different than units(s) involved?:		☐ Yes	□ No						
16. Does the manufacturer guarantee the efficiency of the control equipment?	he control	□Yes □No	(If yes, attach	and label manufa	acturer guarantee)				
		•		Pollutant Cont	rolled				
	PM	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not availab	ole, attach a	separate sheet	of paper to provi	de the control ec	uipment design s	pecifications and performance data			
to support the above mentioned control	efficiency.								
EMISSIO	N UNIT O	PERATING	SCHEDULE	(hours/day,	hours/year, o	r other)			
18. Actual Operation	7200 HOU	JRS/YEAR							
19. Maximum Operation	8760 HOU	JRS/YEAR							
		RE	QUESTED L	IMITS					
20. Are you requesting any permit lim	Yes 🛛 1	No (If Yes, ched	ck all that apply b	pelow)					
Operation Hour Limit(s):									
☐ Production Limit(s):									
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testing	Plea	ase attach all re	elevant stack test	ing summary rep	oorts				
Other:									
21. Rationale for Requesting the Limi	it(s):								

IDENTIFICATION									
Company Name: Facility Name: Facility ID No:									
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038									
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
1. Emissions Unit (EU) Name:	FLAKER	FLAKER LINE #1							
2. EU ID Number:	FL1	FL1							
3. EU Type:		□ New Source □ Unpermitted Existing Source □ Modification to a Permitted Source Previous Permit #: Date Issued:							
4. Manufacturer:	BLAW-K	NOX							
5. Model:	UNKNO	WN							
6. Maximum Capacity:	SEE BEI	LOW							
7. Date of Construction:	1974								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit			•	following section. I	f No, go to line 1	8.			
		EMISSION	IS CONTROL	. EQUIPMENT					
10. Control Equipment Name and ID:									
11. Date of Installation:			12. Date of Mod	dification (if any):					
13. Manufacturer and Model Number:									
14. ID(s) of Emission Unit Controlled:									
15. Is operating schedule different that units(s) involved?:	n emission	☐ Yes	☐ No						
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufac	turer guarantee)				
Children of the delicit equipment.	L			Pollutant Contro	lled				
	PM	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not availa	able, attach a se	eparate sheet	of paper to provi	de the control equi	ipment design s	pecifications and performance data			
to support the above mentioned control	ol efficiency.								
EMISSIC	ON UNIT OF	PERATING	SCHEDULE	(hours/day, ho	ours/year, o	r other)			
18. Actual Operation	7200 HOU	RS/YEAR							
19. Maximum Operation	8760 HOU	RS/YEAR							
		RE	EQUESTED L	IMITS.					
20. Are you requesting any permit li	mits?	′es □ I	No (If Yes, ched	ck all that apply be	low)				
Operation Hour Limit(s):									
☑ Production Limit(s):	FLA	KER LINES 1,	2, AND 3 TO 93	,600 LB PRODUC	T/DAY				
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testir	ng Pleas	se attach all re	elevant stack test	ting summary repo	rts				
Other:									
21. Rationale for Requesting the Lin	mit(s): COM	IMERCIAL DE	EMAND						

IDENTIFICATION									
Company Name: Facility Name: Facility ID No:									
Idaho Fresh-Pak, Inc. Idaho Falls facility 019-00038									
Brief Project Description: Tier II Operating Permit Application									
EMISSIONS UNIT (PROCESS) IDENTIFICATION & DESCRIPTION									
1. Emissions Unit (EU) Name:	FLAKER	FLAKER LINE #2							
2. EU ID Number:	FL2	FL2							
3. EU Type:		 New Source ✓ Unpermitted Existing Source ✓ Modification to a Permitted Source Previous Permit #: Date Issued: 							
4. Manufacturer:	BLAW-K	NOX							
5. Model:	UNKNO	WN							
6. Maximum Capacity:	SEE BEI	LOW							
7. Date of Construction:	1974								
8. Date of Modification (if any)									
9. Is this a Controlled Emission Unit	? No		•	following section. If	f No, go to line 1	8.			
	_	EMISSION	IS CONTROL	. EQUIPMENT					
10. Control Equipment Name and ID:					_				
11. Date of Installation:		12. Date of Mod	lification (if any):						
13. Manufacturer and Model Number:									
14. ID(s) of Emission Unit Controlled:									
15. Is operating schedule different than emission units(s) involved?:									
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufac	turer guarantee)				
Cincional of the dentity against the control of the	L			Pollutant Contro	lled				
	PM	PM10	SO ₂	NOx	VOC	CO			
Control Efficiency									
17. If manufacturer's data is not availa	able, attach a s	eparate sheet	of paper to provi	de the control equi	pment design s	pecifications and performance data			
to support the above mentioned control	ol efficiency.								
EMISSIO	ON UNIT OF	PERATING	SCHEDULE	(hours/day, ho	ours/year, o	r other)			
18. Actual Operation	7200 HOU	RS/YEAR							
19. Maximum Operation	8760 HOUI	RS/YEAR							
		RE	EQUESTED L	IMITS					
20. Are you requesting any permit li	mits?	∕es □ I	No (If Yes, che	ck all that apply be	low)				
☐ Operation Hour Limit(s):									
☑ Production Limit(s):	FLA	KER LINES 1,	, 2, AND 3 TO 93	,600 LB PRODUC	T/DAY				
☐ Material Usage Limit(s):									
☐ Limits Based on Stack Testin	ng Pleas	se attach all re	elevant stack test	ing summary repo	rts				
Other:									
21. Rationale for Requesting the Lir	mit(s): COM	MERCIAL DE	EMAND						

			DENTIFICAT	ION				
Company Name:		Facility N	Name:		Facil	ty ID No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	00038		
Brief Project Description:		Tier II O	perating Perm	it Application				
EMISSIC	NS UN	IT (PROC	ESS) IDENT	FICATION &	DESCRIPTION	ON		
Emissions Unit (EU) Name: F	LAKER L	INE #3						
2. EU ID Number:	L3							
	New So	ource 🗵	Unpermitted Exermitted Source -	isting Source - Previous Permit	:#: Da	te Issued:		
4. Manufacturer:	daho Stee	el						
5. Model:	JNKNOWI	N						
6. Maximum Capacity:	SEE BELOW							
7. Date of Construction: 2	2001							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit?	⊠ No □	Yes If Ye	s, Complete the f	ollowing section.	If No, go to line	18.		
	E	MISSION	S CONTROL	EQUIPMENT				
10. Control Equipment Name and ID:								
11. Date of Installation:			12. Date of Mod	ification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
15. Is operating schedule different than emiss units(s) involved?:	L	Yes	□ No					
16. Does the manufacturer guarantee the conefficiency of the control equipment?	ntrol	Tes Lino (ii yes, attach and laber manufacturer guarantee)						
		Pollutant Controlled						
PM	1	PM10	SO ₂	NOx	VOC	СО		
Control Efficiency								
17. If manufacturer's data is not available, att	ach a sep	arate sheet	of paper to provi	de the control equ	uipment design s	pecifications and performance data		
to support the above mentioned control efficient	ency.							
EMISSION UN	IIT OPE	ERATING	SCHEDULE	(hours/day, h	ours/year, o	r other)		
18. Actual Operation 720	0 HOURS	S/YEAR						
19. Maximum Operation 876	0 HOURS	S/YEAR						
		RE	QUESTED L	IMITS				
20. Are you requesting any permit limits?	✓ Yes	s 🗆 1	No (If Yes, chec	k all that apply be	elow)			
☐ Operation Hour Limit(s):								
☑ Production Limit(s):	FLAKE	ER LINES 1,	2, AND 3 TO 93	600 LB PRODUC	CT/DAY			
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testing	Please	attach all re	elevant stack test	ing summary rep	orts			
☐ Other:								
21. Rationale for Requesting the Limit(s):	COMM	IERCIAL DE	MAND					

			IDENTIFICAT	ION		
Company Name:		Facility I	Name:		Fac	ility ID No:
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019	-00038
Brief Project Description:		Tier II O	perating Perm	nit Application		
EMI	SSIONS U	NIT (PROC	CESS) IDENT	IFICATION &	DESCRIPT	ION
1. Emissions Unit (EU) Name:	FLAKER	LINES 1 ANI	D 2 VACULIFT			
2. EU ID Number:	FL1&2-V	L				
3. EU Type:	☐ New S	Source Dication to a P	Unpermitted Exermitted Exermitted Source	kisting Source - Previous Permi	it #:	ate Issued:
4. Manufacturer:	VACULIF	-T				
5. Model:	UNKNOV	VN				
6. Maximum Capacity:	1,140 CF	M				
7. Date of Construction:	1981					
8. Date of Modification (if any)						
9. Is this a Controlled Emission Unit?	⊠ No I	☐ Yes If Ye	es, Complete the	following section.	If No, go to line	e 18.
		EMISSION	IS CONTROL	EQUIPMEN'		
10. Control Equipment Name and ID:						
11. Date of Installation:			12. Date of Mod	lification (if any):		
13. Manufacturer and Model Number:						
14. ID(s) of Emission Unit Controlled:						
15. Is operating schedule different than units(s) involved?:		☐ Yes	☐ No			
16. Does the manufacturer guarantee the efficiency of the control equipment?	ne control	□Yes □No	(If yes, attach	and label manufa	acturer guarante	ee)
	-			Pollutant Cont	rolled	
	PM	PM10	SO ₂	NOx	VOC	CO
Control Efficiency						
17. If manufacturer's data is not availab	le, attach a se	eparate sheet	of paper to provi	de the control eq	uipment desigr	specifications and performance data
to support the above mentioned control	efficiency.					
EMISSIO	N UNIT OP	ERATING	SCHEDULE	(hours/day, l	nours/year,	or other)
18. Actual Operation	7200 HOUF	RS/YEAR				
19. Maximum Operation	8760 HOUF	RS/YEAR				
		RI	EQUESTED L	IMITS		
20. Are you requesting any permit lim	its?	'es ⊠ l	No (If Yes, ched	ck all that apply b	elow)	
Operation Hour Limit(s):						
☐ Production Limit(s):						
☐ Material Usage Limit(s):						
☐ Limits Based on Stack Testing	Pleas	se attach all r	elevant stack test	ing summary rep	oorts	
Other:						
21. Rationale for Requesting the Limi	t(s):					

			IDENTIFICAT	ION		
Company Name:		Facility I	Name:		Facilit	y ID No:
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	0038
Brief Project Description:		Tier II O	perating Perm	nit Application		
EN	IISSIONS UI	NIT (PROC	CESS) IDENT	IFICATION & I	DESCRIPTIO	N
1. Emissions Unit (EU) Name:	FLAKER	LINE 3 VAC	JLIFT			
2. EU ID Number:	FL3-VL					
3. EU Type:	☐ New S		Unpermitted Exermitted Source	kisting Source Previous Permit	#: Date	e Issued:
4. Manufacturer:	VACULIF	Ŧ				
5. Model:	UNKNOV	VN				
6. Maximum Capacity:	990 CFM	<u> </u>				
7. Date of Construction:	1995					
8. Date of Modification (if any)						
9. Is this a Controlled Emission Unit			•	following section. I	f No, go to line 1	8.
		EMISSION	IS CONTROL	. EQUIPMENT		
10. Control Equipment Name and ID:			T		_	
11. Date of Installation:			12. Date of Mod	dification (if any):		
13. Manufacturer and Model Number:						
14. ID(s) of Emission Unit Controlled:						
15. Is operating schedule different that units(s) involved?:		Yes	☐ No			
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufac	turer guarantee)	
Cincional of the dentity against the control of the	<u>L</u>			Pollutant Contro	lled	
	PM	PM10	SO ₂	NOx	VOC	CO
Control Efficiency						
17. If manufacturer's data is not availa	able, attach a se	parate sheet	of paper to provi	de the control equi	ipment design sp	pecifications and performance data
to support the above mentioned contri	ol efficiency.					
EMISSIO	ON UNIT OP	ERATING	SCHEDULE	(hours/day, he	ours/year, or	r other)
18. Actual Operation	7200 HOUF	RS/YEAR				
19. Maximum Operation	8760 HOUF	RS/YEAR				
		RE	EQUESTED L	IMITS.		
20. Are you requesting any permit li	imits?	es 🛛 I	No (If Yes, che	ck all that apply be	low)	
Operation Hour Limit(s):						
☐ Production Limit(s):						
☐ Material Usage Limit(s):						
☐ Limits Based on Stack Testin	ng Pleas	se attach all re	elevant stack tes	ting summary repo	rts	
Other:						
21. Rationale for Requesting the Lir	mit(s):					

			DENTIFICAT	ION				
Company Name:		Facility N	Name:		Facil	ity ID No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-	00038		
Brief Project Description:		Tier II O	perating Perm	it Application				
EMISSIC	ONS UNI	T (PROC	ESS) IDENT	FICATION &	DESCRIPTION	ON		
Emissions Unit (EU) Name:	PROCTOR	OCTOR BELT DRYER #1						
2. EU ID Number:	P1							
	☐ New Sou ☐ Modifica	urce 🗵 ation to a Pe	Unpermitted Exermitted Source -	isting Source - Previous Permit	:#: Da	ate Issued:		
4. Manufacturer:	PROCTOR	AND SCH	WARTZ					
5. Model:	UNKNOWN							
6. Maximum Capacity:	SEE BELOW							
7. Date of Construction:	965							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit?	⊠ No □	Yes If Yes	s, Complete the f	ollowing section.	If No, go to line	18.		
	EN	MISSION	S CONTROL	EQUIPMENT	<u> </u>			
10. Control Equipment Name and ID:								
11. Date of Installation:			12. Date of Mod	ification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
15. Is operating schedule different than emisunits(s) involved?:		Yes	□ No					
16. Does the manufacturer guarantee the conficiency of the control equipment?	ntrol	Tres Tivo (ii yes, attach and laber manufacturer guarantee)						
		Pollutant Controlled						
PN	1	PM10	SO ₂	NOx	VOC	CO		
Control Efficiency								
17. If manufacturer's data is not available, at	ach a sepa	arate sheet	of paper to provi	de the control equ	uipment design :	specifications and performance data		
to support the above mentioned control effici-	-							
EMISSION UI	NIT OPE	RATING	SCHEDULE	(hours/day, h	ours/year, c	or other)		
18. Actual Operation 720	0 HOURS/	/YEAR						
19. Maximum Operation 876	0 HOURS							
		RE	QUESTED L	IMITS				
20. Are you requesting any permit limits?		; <u> </u>	No (If Yes, chec	k all that apply be	elow)			
☐ Operation Hour Limit(s):								
☑ Production Limit(s):	PROCT	OR LINES	1, 2, AND 3 TO	54,000 LB PROD	UCT/DAY			
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testing	Please a	attach all re	elevant stack test	ing summary rep	orts			
Other:								
21. Rationale for Requesting the Limit(s):	СОММЕ	ERCIAL DE	MAND					

			IDENTIFICAT	ION		
Company Name:		Facility I	Name:		Facilit	y ID No:
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	0038
Brief Project Description:		Tier II O	perating Perm	nit Application		
EN	IISSIONS UI	NIT (PROC	CESS) IDENT	IFICATION & I	DESCRIPTIO	N
1. Emissions Unit (EU) Name:	PROCTO	R BELT DR	YER #2			
2. EU ID Number:						
3. EU Type:	☐ New S		Unpermitted Exermitted Source	kisting Source - Previous Permit	#: Date	e Issued:
4. Manufacturer:	PROCTO	R AND SCH	WARTZ			
5. Model:	UNKNOV	VN				
6. Maximum Capacity:	SEE BEL	.OW				
7. Date of Construction:	<mark>1965</mark>					
8. Date of Modification (if any)						
9. Is this a Controlled Emission Unit			•	following section. If	f No, go to line 1	8.
		EMISSION	IS CONTROL	EQUIPMENT		
10. Control Equipment Name and ID:			ı			
11. Date of Installation:			12. Date of Mod	lification (if any):		
13. Manufacturer and Model Number:						
14. ID(s) of Emission Unit Controlled:15. Is operating schedule different that	on amission					
units(s) involved?:		Yes	□ No			
16. Does the manufacturer guarantee efficiency of the control equipment?	the control	□Yes □No	(If yes, attach	and label manufac	turer guarantee)	
			1	Pollutant Contro	lled	
	PM	PM10	SO ₂	NOx	VOC	СО
Control Efficiency						
17. If manufacturer's data is not availa	able, attach a se	parate sheet	of paper to provi	de the control equi	pment design sp	pecifications and performance data
to support the above mentioned contr						
EMISSI	ON UNIT OP	ERATING	SCHEDULE	(hours/day, ho	ours/year, or	other)
18. Actual Operation	7200 HOUF	RS/YEAR				
19. Maximum Operation	8760 HOUF					
		RE	EQUESTED L	IMITS		
20. Are you requesting any permit I	imits?	es 🔲 I	No (If Yes, che	ck all that apply be	low)	
Operation Hour Limit(s):						
☐ Production Limit(s):	PRO	CTOR LINES	1, 2, AND 3 TO	54,000 LB PRODU	JCT/DAY	
☐ Material Usage Limit(s):						
Limits Based on Stack Testi	ng Pleas	e attach all re	elevant stack tes	ing summary repo	rts	
Other:						
21. Rationale for Requesting the Lir	mit(s): COM	MERCIAL DE	EMAND			

			IDENTIFICAT	ION		
Company Name:		Facility I	Name:		Fac	ility ID No:
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019	-00038
Brief Project Description:		Tier II O	perating Perm	nit Application	•	
EMIS	SIONS U	NIT (PROC	CESS) IDENT	IFICATION &	DESCRIPT	ION
1. Emissions Unit (EU) Name:	PROCTO	R BELT DR	YER #3			
2. EU ID Number:	P3					
3. EU Type:	☐ New S	Source Dication to a P	Unpermitted Exermitted Exermitted Source	kisting Source Previous Permi	it #: D	ate Issued:
4. Manufacturer:	PROCTO	R AND SCH	WARTZ			
5. Model:	UNKNOV	VN				
6. Maximum Capacity:	SEE BEL	_OW				
7. Date of Construction:	1965					
8. Date of Modification (if any)						
9. Is this a Controlled Emission Unit?	⊠ No I	☐ Yes If Ye	es, Complete the	following section.	If No, go to line	e 18.
		EMISSION N	IS CONTROL	EQUIPMEN'		
10. Control Equipment Name and ID:						
11. Date of Installation:			12. Date of Mod	lification (if any):		
13. Manufacturer and Model Number:						
14. ID(s) of Emission Unit Controlled:						
15. Is operating schedule different than e units(s) involved?:		Yes	☐ No			
16. Does the manufacturer guarantee the efficiency of the control equipment?	e control	□Yes □No	(If yes, attach	and label manufa	acturer guarante	ee)
	-			Pollutant Cont	rolled	_
	PM	PM10	SO ₂	NOx	VOC	CO
Control Efficiency						
17. If manufacturer's data is not available	e, attach a se	eparate sheet	of paper to provi	de the control eq	uipment design	specifications and performance data
to support the above mentioned control e	efficiency.					
EMISSION	UNIT OP	ERATING	SCHEDULE	(hours/day, l	nours/year,	or other)
18. Actual Operation	7200 HOUF	RS/YEAR				
19. Maximum Operation	8760 HOUF	RS/YEAR				
		RI	EQUESTED L	IMITS		
20. Are you requesting any permit limit	s? 🛛 🗆 Y	es 🔲	No (If Yes, ched	ck all that apply b	elow)	
Operation Hour Limit(s):						
☐ Production Limit(s):	PRO	CTOR LINES	1, 2, AND 3 TO	54,000 LB PROE	DUCT/DAY	
☐ Material Usage Limit(s):						
☐ Limits Based on Stack Testing	Pleas	se attach all r	elevant stack test	ing summary rep	orts	
Other:						
21. Rationale for Requesting the Limit(s): COM	MERCIAL DE	EMAND	-		

			DENTIFICAT	ION				
Company Name:		Facility N	Name:		Facil	ty ID No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	00038		
Brief Project Description:		Tier II O	perating Perm	it Application				
EMISSI	ONS UN	NIT (PROC	ESS) IDENT	IFICATION &	DESCRIPTION	ON		
1. Emissions Unit (EU) Name:	LARGE F	RGE FUEL TANK						
2. EU ID Number:	LT							
3. EU Type:	☐ New S	Source 🗵 cation to a Pe	Unpermitted Exermitted Source -	isting Source - Previous Permi	t#: Da	te Issued:		
4. Manufacturer:	UNKNOW	VN						
5. Model:	UNKNOW	۷N						
6. Maximum Capacity:	200,000 GALLONS							
7. Date of Construction:	1974							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit?	⊠ No [☐ Yes If Ye	s, Complete the t	following section.	If No, go to line	18.		
		EMISSION	S CONTROL	EQUIPMENT				
10. Control Equipment Name and ID:								
11. Date of Installation:			12. Date of Mod	lification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
15. Is operating schedule different than emi- units(s) involved?:		Yes	□ No					
16. Does the manufacturer guarantee the coefficiency of the control equipment?	ontrol	Tres Divo (ii yes, attacii and laber manufacturer guarantee)						
		Pollutant Controlled						
Р	М	PM10	SO ₂	NOx	VOC	СО		
Control Efficiency								
17. If manufacturer's data is not available, a	ttach a se	parate sheet	of paper to provi	de the control eq	uipment design s	pecifications and performance data		
to support the above mentioned control effic	ciency.							
EMISSION U	NIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, o	r other)		
18. Actual Operation 87	60 HOUR	RS/YEAR						
19. Maximum Operation 87	'60 HOUR	RS/YEAR						
		R	QUESTED L	IMITS				
20. Are you requesting any permit limits?	☐ Ye	es 🛛 🗅 🏻	No (If Yes, chec	k all that apply b	elow)			
☐ Operation Hour Limit(s):								
☐ Production Limit(s):								
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testing	Pleas	e attach all re	elevant stack test	ing summary rep	orts			
☐ Other:								
21. Rationale for Requesting the Limit(s):								

			DENTIFICAT	ION				
Company Name:		Facility N	Name:		Facil	ty ID No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0	00038		
Brief Project Description:		Tier II O	perating Perm	it Application				
EMISSI	IONS UN	NIT (PROC	ESS) IDENT	IFICATION &	DESCRIPTION	ON		
1. Emissions Unit (EU) Name:	SMALL F	ALL FUEL TANK						
2. EU ID Number:	ST							
3. EU Type:	☐ New S		Unpermitted Exermitted Source -	isting Source - Previous Permi	t#: Da	te Issued:		
4. Manufacturer:	UNKNOW	٧N						
5. Model:	UNKNOW	/N						
6. Maximum Capacity:	14,400 GALLONS							
7. Date of Construction:	1981							
8. Date of Modification (if any)								
9. Is this a Controlled Emission Unit?	⊠ No [☐ Yes If Ye	s, Complete the t	following section.	If No, go to line	18.		
		EMISSION	S CONTROL	EQUIPMENT				
10. Control Equipment Name and ID:								
11. Date of Installation:			12. Date of Mod	lification (if any):				
13. Manufacturer and Model Number:								
14. ID(s) of Emission Unit Controlled:								
15. Is operating schedule different than emi units(s) involved?:		Yes	□ No					
16. Does the manufacturer guarantee the coefficiency of the control equipment?	ontrol	Tres Divo (ii yes, attacii and label manufacturer guarantee)						
		Pollutant Controlled						
Р	M	PM10	SO ₂	NOx	VOC	СО		
Control Efficiency								
17. If manufacturer's data is not available, a	attach a se	parate sheet	of paper to provi	de the control eq	uipment design s	pecifications and performance data		
to support the above mentioned control effic	ciency.							
EMISSION U	INIT OP	ERATING	SCHEDULE	(hours/day, h	nours/year, o	r other)		
18. Actual Operation 87	760 HOUR	S/YEAR						
19. Maximum Operation 87	760 HOUR	S/YEAR						
		R	QUESTED L	IMITS				
20. Are you requesting any permit limits?	☐ Ye	es 🖾 N	No (If Yes, ched	k all that apply b	elow)			
Operation Hour Limit(s):								
☐ Production Limit(s):								
☐ Material Usage Limit(s):								
☐ Limits Based on Stack Testing	Pleas	e attach all re	elevant stack test	ing summary rep	orts			
☐ Other:								
21. Rationale for Requesting the Limit(s):								

		1	DENTIFICATION					
Company Name:		Facility N	Name:		Facility ID) No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0003	8		
Brief Project Description:		Tier II O	perating Permit Applicat	ion				
			EXEMPTION					
Please see IDAPA 58.01.01.2				-		enstruct requirements.		
			DESCRIPTION AND S					
			isting Unit Modifica					
 ⊠ % Used For Process ⊇ % Used For Space Heat □ % Used For Generating Electricity 2. Use of Boiler: 								
3. Boiler ID Number: BLR_	1 4	. Rated Cap	pacity: 🛛 61.6 Million E			'		
			1,000	Pounds Ste	am Per Ho	our (1,000 lb steam/hr)		
5. Construction Date: 1974	6	6. Manufactu	ırer: Cleaver Brooks	7. Model:	WT200	x-CN5		
8. Date of Modification (if app	licable): 9	. Serial Nun	nber (if available):	10. Contro	ol Device (if any):		
1981				Note: Atta form(s)	ach applic	able control equipment		
	FUE	EL DESCRI	PTION AND SPECIFICA					
11. Fuel Type	□ Diesel	Fuel (#2)		☐ Coal		Other Fuels		
	(gal/hr)	(cf/hr)	(unit:	/hr)	(unit:gal /hr)		
12. Full Load Consumption Rate	449	9.6	61,600			449.6		
13. Actual Consumption Rate			226.968 mmcf/yr					
14. Fuel Heat Content (Btu/unit, LHV)	137 MME	Btu/mgal	1000 Btu/cf			137 MMBtu/mgal		
15. Sulfur Content wt%	0.	5	0			0.005		
16. Ash Content wt%	negliç	gible	N/A			0.02		
STEAM DESCRIPTION AND	SPECIFICAT	TIONS						
17. Steam Heat Content	N/		N/A			N/A		
18. Steam Temperature (°F)	N/.	Α	N/A			N/A		
19. Steam Pressure (psi)	N/	A	N/A			N/A		
20. Steam Type	N/	A	N/A		urated rheated	☐ Saturated☐ Superheated		
		OPERATI	NG LIMITS & SCHEDU	LE				
21. Imposed Operating Limits	(hours/year	, or gallons	fuel/year, etc.): 2,640,00	00 gallons d	istillate fue	l per year		
22. Operating Schedule (hour	s/day, month	s/year, etc.)	: not applicable					

			DENTIFICATION					
Company Name:		Facility N	Name:		Facility ID	No:		
Idaho Fresh-Pak, Inc.		Idaho Fa	alls facility		019-0003	8		
Brief Project Description:		Tier II Operating Permit Application						
			EXEMPTION					
Please see IDAPA 58.01.01.2						nstruct requ	irements.	
			DESCRIPTION AND S					
			isting Unit Modifica					
 								
3. Boiler ID Number: BLR_2	2 4	4. Rated Cap	pacity: 🔀 26.7 Million E			•	,	
			1,000	Pounds Stea	am Per Ho	our (1,000 lb s	steam/hr)	
5. Construction Date: 1974	6	6. Manufactu	ırer: Cleaver Brooks	7. Model:	L34			
8. Date of Modification (if app	licable):	9. Serial Nun	nber (if available):	10. Contro	ol Device (if any):		
				Note: Atta form(s)	ch applic	able control	equipment	
	FU	EL DESCRI	PTION AND SPECIFICA					
11. Fuel Type	☐ Diesel	Fuel (#)		☐ Coal		Other	r Fuels	
	(gal/h	r)	(cf/hr)	(unit:	/hr)	(unit:	/hr)	
12. Full Load Consumption Rate			26,700					
13. Actual Consumption Rate			139.673 mmcf/yr					
14. Fuel Heat Content (Btu/unit, LHV)			1000 Btu/cf					
15. Sulfur Content wt%			0					
16. Ash Content wt%			N/A					
STEAM DESCRIPTION AND	SPECIFICA	TIONS						
17. Steam Heat Content			N/A					
18. Steam Temperature (°F)	N,	/A	N/A					
19. Steam Pressure (psi)	N,	/A	N/A					
20. Steam Type	N	/A	N/A		urated rheated		turated erheated	
		OPERATI	NG LIMITS & SCHEDU	LE				
21. Imposed Operating Limits	(hours/year	r, or gallons	fuel/year, etc.): Not App	licable				
22. Operating Schedule (hour	s/day, month	ns/year, etc.)	: Not Applicable					

DEQ AIR QUALITY PROGRAM

1410 N. Hilton Boise, ID 83706

For assistance: (208) 373-0502

PERMIT TO CONSTRUCT APPLICATION

Company Name: Idaho Fresh-Pak, Inc.

Facility Name: Idaho Falls Facility

Facility ID No.: 019-00038

Brief Project Description: Tier II Operating Permit Application

	SUM	MARY OF F	ACILITY WI	DE EMISSIO	ON RATES F	OR CRITER	RIA POLLU	TANTS - PO	INT SOURC	ES			
1.	2.	PM	M ₁₀	S	SO_2 NO_X			3. I C	0	V	oc	Lead	
Emissions units	Stack ID	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr
					Point So								
Boiler 1	BLR_1	5.10	22.34	31.92	93.91	13.49	52.95	10.35	45.33	0.34	1.48		-
Boiler 2	BLR_2	0.41	1.78	0.02	0.07	4.01	17.54	4.49	19.65	0.15	0.64		-
Flaker Lines 1 and 2 Vaculift	FL_1&2	0.17	0.73 0.63										
Flaker Line 3 Vaculift	FL_3	0.14	0.63										
Bag Room Vaculift	BR_VAC	0.08	0.35										-
Canline Vaculift	CL_VAC	0.07	0.29										-
Proctor Belt Dryer 1	PROCT_1	0.83	3.61										-
Proctor Belt Dryer 2	PROCT_2	0.83	3.61						-				-
Proctor Belt Dryer 3	PROCT_3	0.83	3.61										-
Flaker Line 1 Dryer	FLAKE1	1.96	8.60										-
Flaker Line 1 Dryer	FLAKE2	1.96	8.60										-
Flaker Line 1 Dryer	FLAKE3	1.96	8.60						-				-
Bin Dryer 1	PLANT1-3	0.04	0.17	0.00	0.01	0.38	1.64	0.42	1.84	0.01	0.06		-
Bin Dryer 2	PLANT1-3	0.06	0.25	0.00	0.01	0.57	2.50	0.64	2.80	0.02	0.09		-
AMU (Waste Plant)	PLANT1-3	0.04	0.17	0.00	0.01	0.38	1.64	0.42	1.84	0.01	0.06		-
AMU (Flaker Room)	PLANT1-3	0.04	0.17	0.00	0.01	0.38	1.64	0.42	1.84	0.01	0.06		-
AMU (Bag Room)	PLANT1-3	0.08	0.33	0.00	0.01	0.75	3.29	0.84	3.68	0.03	0.12		-
Large Tank	LT								-	0.01	0.03		-
Small Tank	ST									0.00	0.01		-
Total		14.57	63.83	31.95	94.02	19.94	81.20	17.57	76.97	0.58	2.56		

	DEQ AIR QUALITY PROGRAM 1410 N. Hilton Boise, ID 83706 For assistance: (208) 373-0502	PERMIT TO CONSTRUCT APPLICAT
Company Name:	Idaho Fresh-Pak, Inc.	
Facility Name:		Idaho Falls Facility
Facility ID No.:		019-00038
Brief Project Description:	Tier II Operating Permit Application	

	SUMM	ARY OF FA	CILITY WID	E EMISSIO	N RATES FO	OR CRITERI		ANTS - FUG 3.	ITIVE SOUF	RCES			
1.	2.	PN	M ₁₀	S	O ₂	N	O _x		0	V	oc	Le	ad
Fugitive Source Name	Fugitive ID	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr
					Fugitive S	ource(s)							
Not Applicable													
	+												
Гotal													

						E	mission Invent	ory - Criteria P	ollutants - Proje	ect emissions i	ncrease - Point	Sources For	m El-CP3
	DEQ AIR QUALIT 1410 N. Hilton Boise, ID 83706 For assistance: (2								P	ERMIT TO	CONSTR	UCT APPI	LICATION
	Idaho Fresh-Pak, I	no Fresh-Pak, Inc.											
Facility Name:							no Falls Facility	<u>'</u>					
Facility ID No.:		019-00038											
Brief Project Description:	Tier II Operating P	ermit Applicati	on										
	OLIMATAD	V OF ENIO		DEAGE (DD	OBOOED DE	E BBEVIO	HOLV MOD	ELED BEEV	DOINT OO	ПРОЕО			
	SUMMAR	Y OF EMIS	SIONS INCE	REASE (PRO	OPOSED PT	E - PREVIO			- POINT SO	URCES			
	_	-						3.	_				
1.	2.		M ₁₀		O ₂		O _X		0		OC		ad
Emissions units	Stack ID	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr
					Point So	urce(s)							
Not Applicable													
									·				

Total

	DEQ AIR QUALITY PROGRAM 1410 N. Hilton Boise, ID 83706 For assistance: (208) 373-0502	PERMIT TO CONSTRUCT APPLICATION
Company Name:	Idaho Fresh-Pak, Inc.	
Facility Name:		Idaho Falls Facility
Facility ID No.:		019-00038
Brief Project Description:	Tier II Operating Permit Application	

	SUMMARY	OF EMISSI	ONS INCRE	ASE (PROF	POSED PTE	- PREVIOU			FUGITIVE S	OURCES			
			3. Air Pollutant Maximum Change in Emissions Rate (lbs/hr or t/yr)										
1.	2.	PI	VI ₁₀	s	O ₂		o _x	T	ю	1	ос	Le	ad
Fugitive Source Name	Fugitive ID	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr
					Fugitive S	ource(s)							
Not Applicable													
Total													1

 $(\mu g/m3)$

150

50

1300

365

80

100

10000

40000

NAAQS

81%

76%

40%

29%

29%

30%

45%

6%

	1410 N. Hilton Boise, ID 837				IIT TO CONS	TRUCT APF	PLICATION			
Company Name:	Idaho Fresh-F	Pak, Inc.								
Facility Name:		Idaho Falls Facility								
Facility ID No.:				01	9-00038					
Brief Project Description:	Tier II Operat	ing Permit Applic	ation							
	SUMM	ARY OF AIR II	MPACT ANALY	SIS RESULTS 2.	- CRITERIA POL 3.	LUTANTS 4.		5.		
Criteria Pollutants	Averaging	Significant Impact Analysis	Significant Contribution	Full Impact Analysis	Background Concentration	Total Ambient Impact	NAAQS	Percent of		

Level (µg/m3)

5

25

5

1

2000

500

Results

 $(\mu g/m3)$

49

12

484

81

15

13

901

194

 $(\mu g/m3)$

73

26

34

26

8

17

3,600

2,300

 $(\mu g/m3)$

122

38

518

107

23

30

4,501

2,494

 PM_{10}

SO₂

NO₂ b

CO

Results

 $(\mu q/m3)$

--

Period

24-hour a

Annual

3-hr

24-hr

Annual

Annual

1-hr

8-hr

a - Maximum 24-hour PM10 concentration is the 6th highest concentration over five years of modeling.

b - Maximum NO2 concentration calculated by multiplying maximum modeled NOx concentration by 0.75.

	DEQ AIR QUALITY PROGRAM 1410 N. Hilton Boise, ID 83706 For assistance: (208) 373-0502	
Company Name:	Idaho Fresh-Pak, Inc.	
Facility Name:		

Company Name:	idano Fresh-Fak, inc.	
Facility Name:		Idaho Falls Facility
Facility ID No.:		019-00038
Brief Project Description:	Tier II Operating Permit Application	

POINT SOURCE STACK PARAMETERS										
1.	2.	3a.	3b.	4.	5.	6.	.7	8.	9.	10.
Emissions units	Stack ID	UTM Easting (m)	UTM Northing (m)	Base Elevation (m)	Stack Height (m)	Modeled Diameter (m)	Stack Exit Temperat ure (K)	Stack Exit Flowrate (acfm)	Stack Exit Velocity (m/s)	Stack orientation (e.g., horizontal, rain cap)
Point Source(s)										
Boiler 1	BLR_1	414,692.88	4,822,241.40	1,443.00	11.89	1.04	472.04	15,268.00	8.44	Vertical
Boiler 2	BLR_2	414,698.61	4,822,241.60	1,443.00	11.89	0.79	472.04	5,866.00	5.70	Vertical
Flaker Lines 1 and 2 Vaculift	FL_1&2	414,690.01	4,822,306.48	1,445.00	9.14	0.001	316.48	1,140.00	0.001	Horizontal
Flaker Line 3 Vaculift	FL_3	414,690.01	4,822,304.71	1,445.00	9.14	0.001	316.48	990.00	0.001	Horizontal
Bag Room Vaculift	BR_VAC	414,688.81	4,822,308.90	1,445.00	9.14	0.001	316.48	550.00	0.001	Horizontal
Canline Vaculift	CL_VAC	414,674.05	4,822,315.70	1,444.00	8.53	0.001	0.00	450.00	0.001	Horizontal
Proctor Belt Dryer 1	PROCT_1	414,651.61	4,822,305.60	1,445.00	8.53	0.001	355.37	7,210.00	0.001	Horizontal
Proctor Belt Dryer 2	PROCT_2	414,658.83	4,822,305.60	1,445.00	8.53	0.001	355.37	7,634.00	0.001	Horizontal
Proctor Belt Dryer 3	PROCT_3	414,664.38	4,822,305.60	1,445.00	8.53	0.001	355.37	4,241.00	0.001	Horizontal
Flaker Line 1 Dryer	FLAKE1	414,684.60	4,822,283.09	1,445.00	10.06	1.14	316.48	26,315.00	39.71	Vertical
Flaker Line 1 Dryer	FLAKE2	414,679.72	4,822,283.09	1,445.00	10.36	1.14	316.48	26,315.00	39.71	Vertical
Flaker Line 1 Dryer	FLAKE3	414,684.60	4,822,291.62	1,445.00	10.36	1.14	315.93	26,315.00	35.87	Vertical
Plant Exhaust 1	PLANT1	414,652.05	4,822,319.24	1,444.00	8.53	0.001	313.71	4,420.00	0.001	Horizontal
Plant Exhaust 2	PLANT2	414,658.97	4,822,319.24	1,444.00	8.53	0.001	313.71	4,420.00	0.001	Horizontal
Plant Exhaust 3	PLANT3	414,664.64	4,822,319.24	1,444.00	8.53	0.001	313.71	4,420.00	0.001	Horizontal
				_			_			

	1410 N. Hilton Boise, ID 8370	LITY PROGRAM 06 e: (208) 373-0502		PERMIT TO CONSTRUCT APPLICATION										
Company Name:	Idaho Fresh-Pa	ak. Inc.												
Facility Name:		,			Idaho F	alls Facility								
Facility ID No.:						-00038								
Brief Project Description:	Tier II Operatin	I Operating Permit Application												
Brief Froject Description.	пст п орстаат	a Operating Permit Application												
		FUGITIVE SOURCE PARAMETERS												
1.	2.	3a.	3b.	4.	5.	6.	7.	8.	9.	10.				
Emissions units	Stack ID	UTM Easting (m)	UTM Northing (m)	Base Elevation (m)	Release Height (m)	Easterly Length (m)	Northerly Length (m)	Angle from North (°)	Initial Vertical Dimension (m)	Initial Horizontal Dimension (m)				
Area Source(s)														
, ,	Not Applicat	ole												
Volume Source(s)														
	Not Applicat	ole												

	DEQ AIR QUALITY PROGRAM 1410 N. Hilton Boise, ID 83706 For assistance: (208) 373-0502	PERMIT TO CONSTRUCT APPLICATION
Company Name:	Idaho Fresh-Pak, Inc.	
Facility Name:		Idaho Falls Facility
Facility ID No.:		019-00038
Brief Project Description:	Tier II Operating Permit Application	

BUILDING AND STRUCTURE INFORMATION										
1.	2.	3.	4.	5.	6.	7.				
Building ID Number	Length (ft)	Width (ft)	Base Elevation (m)	Building Height (m)	Number of Tiers	Description/Comments				
Building 1	347.00	251.00	1445.00	5.79	1					
Building 2	197.00	50.00	1445.00	5.79	1					
Building 3	79.00	316.00	1445.00	7.32	1					
Building 4	180.00	564.00	1445.00	7.92	1					

	DENTIFICATION		-					
Company Name:	Facility Name:		Facility ID No:					
Idaho Fresh-Pak, Inc.	Idaho Falls facility 019-0003							
Brief Project Description: Tier II Operating Pe	rmit Application							
APPLIC	ABILITY DETERMINATION	N						
Will this project be subject to 1990 CAA Section 112(g)? (Case-by-Case MACT)	NO * If YES then applicant must sub	YES*	□ DON'T KNOW					
	determination [IAC 567 22-1(3)"		s sy oddo www.					
Will this project be subject to a New Source Performance Standard?	⊠ NO	☐ YES*	☐ DON'T KNOW					
(40 CFR part 60)	*If YES please identify sub-part:							
3. Will this project be subject to a MACT (<u>Maximum Achievable Control Technology</u>) regulation? (40 CFR part 63)	⊠ NO	☐ YES*	☐ DON'T KNOW					
THIS ONLY APPLIES IF THE PROJECT EMITS A HAZARDOUS AIR POLLUTANT – SEE TABLE A FOR LIST	*If YES please identify sub-part:							
4. Will this project be subject to a NESHAP (National Emission	⊠ NO	☐ YES*	☐ DON'T KNOW					
Standards for Hazardous Air Pollutants) regulation? (40 CFR part 61)	*If YES please identify sub-part:							
5. Will this project be subject to PSD (<u>Prevention of Significant Deterioration</u>)? (40 CFR section 52.21)	⊠ NO	YES	☐ DON'T KNOW					
	⊠ NO	☐ YES*	☐ DON'T KNOW					
Was netting done for this project to avoid PSD?	*If YES please attach netting cal	culations						
IF YOU ARE UNSURE HOW TO ANSWE	R ANY OF THESE QUESTION	NS CALL 1-208-373-0	0502					

APPENDIX B

Potential Emission Rate Calculations

POTENTIAL EMISSION RATE CALCULATIONS

Tier II Operating Permit Application Idaho Falls, Idaho

	Stacks	Heat input	t input Heat input Throughput		N	NOx CO		SO2		PM10		VOC		Comments	
		MMBtu/hr	MMBtu/yr	lb/day	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Boiler 1 distillate			361,680	-	13.49	39.60	4.50	13.20	31.92	93.72	2.97	8.71	0.09	0.26	2,640,000 gal/year distillate fuel, 0.5%S
Boiler 1 biofuel	1	61.6	539,616	-	6.58	28.82	2.76	12.09	0.13	0.57	5.10	22.34	0.09	0.40	firing n.g. at max annual heat input.
Boiler 1 nat gas			339,010	-	9.24	40.47	10.35	45.33	0.04	0.16	0.94	4.10	0.34	1.48	firing biofuel at max annual heat input
			_												distillate firing 5,871 hr/yr and the max emissions
Boiler 1 distillate composite (distillate w	ith n.g. or l		_	-	-	52.95	-	28.15	-	93.91	-	16.08	-	0.75	of firing 2,877 hours of natural gas or biofuel.
Boiler 2 nat gas	1	26.7	233,892	-	4.01	17.54	4.49	19.65	0.02	0.07	0.41	1.78	0.15	0.64	firing n.g. at max annual heat input.
Belt dryer 1 (Proctor 1)	1	-	-		0	0	0	0	0	0	0.8251	3.61	0	0	54,000 lb product/day
Belt dryer 2 (Proctor 2)	1	-	-	54,000	0	0	0	0	0	0	0.83	3.61	0	0	2.20 lb PM10/ton
Belt dryer 3 (Proctor 3)	1	-	-		0	0	0	0	0	0	0.83	3.61	0	0	
Flaker line 1	1	-	-		0	0	0	0	0	0	1.96	8.60	0	0	93,600 lb product/day
Flaker line 2	1	-	-	93,600	0	0	0	0	0	0	1.96	8.60	0	0	3.02 lb PM10/ton
Flaker line 3	1	-	-		0	0	0	0	0	0	1.96	8.60	0	0	
Flaker lines 1& 2 vaculift	1	-	-	-	0	0	0	0	0	0	0.17	0.73	0	0	1,140 cfm. Assume 0.017 gr/acf
Flaker line 3 vaculift	1	-	-	-	0	0	0	0	0	0	0.14	0.63	0	0	990 cfm. Assume 0.017 gr/acf
Bin Dryer 1	indoors	2.5	-	-	0.38	1.64	0.42	1.84	0.002	0.01	0.04	0.17	0.01	0.06	
Bin Dryer 2	indoors	3.8	-	-	0.57	2.50	0.64	2.80	0.002	0.01	0.06	0.25	0.02	0.09	
Bagroom dust vaculift	1	-	-	-	0	0	0	0	0	0	0.08	0.35	0	0	550 cfm. Assume 0.017 gr/acf
Canline vaculift	1	-	-	-	0	0	0	0	0	0	0.07	0.29	0	0	450 cfm. Assume 0.017 gr/acf
Fresh Air Make-Up Fan (Waste Plant)	indoors	2.5	-	-	0.38	1.64	0.42	1.84	0.002	0.01	0.04	0.17	0.01	0.06	
Fresh Air Make-Up Fan (Flaker Room)	indoors	2.5	-	-	0.38	1.64	0.42	1.84	0.002	0.01	0.04	0.17	0.01	0.06	
Fresh Air Make-Up Fan (Bag Room)	indoors	5	-	-	0.75	3.29	0.84	3.68	0.003	0.01	0.08	0.33	0.03	0.12	
Large Tank (200,000 gallons)	-	-	-	2,640,000	0	0	0	0	0	0	0	0	0.007	0.03	
Small Tank (14,400 gallons)	-	-	-	2,640,000	0	0	0	0	0	0	0	0	0.002	0.01	
				Total PTE =	19.94	81.20	17.57	76.97	31.95	94.02	14.57	63.83	0.58	2.56	
Tan indicates proposed limits				-			=	•	_		-		-		
Combustion Emis	sion Fact	ors:			NOx		CO		SO2		PM10		VOC	Source:	
															2 Section 1.3 - Uncontrolled <100 MMBtu/hr (CO
Distillate Emiss	ion Factor	s		lb/1000 gal	30		10		71		6.6		0.2		EFs are doubled, NOx EF multiplied by 1.5)
													Biofuels Technical Data - Appendix E, (CO and PM10 EFs		
Biofuel Emission	on Factors	i		lb/MMBtu	0.1068		0.0448		0.0021		0.0828		0.0015	are double	ed, NOx EF multiplied by 1.5)
															2 Section 1.2 - Uncontrolled <100 MMBtu/hr. (CO
Natural Gas Emis	ssion Facto	ors		lb/MMscf	150		168		0.6		15.2		5.5	and PM10	EFs are doubled, NOx EF multiplied by 1.5)
.															
Process Emissi	on Factor	s:												0	and Data forms I assistable ID about Deart I'
													est Data from Lewisville, ID plant Proctor Lines.		
Belt Dryer Emission Factors lb/ton produc			lb/ton product	roduct						2.20				ission factor times four.	
Flaker Line Emission Factors III the product									0.00				est Data from Lewisville, ID plant Flaker Line.		
Flaker Line Emission Factors Ib/ton product 3.02 PM10 emission factor times four.					ISSION TACIOL UMES TOUL.										
Assumptions:			0 gallons dist			4074	ID 4 D 4 50 /	700 0							
1				, maximum allo	wable after	r 1974 per l	IDAPA 58.0	1.01.728.0	12.						
		Btu/scf natu			DI -		4:		e 165 17	-l l 40 f-		_			
	0.017	grains/cubic	foot for cycle	ones	Based on	cyclone tes	sting at Lew	isville facili	ty multiplied	d by 10 for c	onservatisr	n			

APPENDIX C Biofuels Technical Data

Rendered fats possible solution to high fuel costs

Table 1. Emission Factor Pollutant

Fael	co,	Lead	N ₂ O (low) NOx burner)	N ₂ O	PM-Total Condensable	РМ	PM- Filterable	SO ₂	тос	VOC
Natural Gas (lb/10 ⁶ scf)pounds	120,000	0.0005 andard cub	2.2 ic ft.	0.64	7.6	5.7	1.9	0.6	11	5.5
No. 2 Oil Fired lb./M gal.	5	-	20.54		2	2	2	71	-	0,252
Converted to lb./MM Btu assuming 140,000	0.0357 Btu/gal.	-	0.1429	-	0.0143	0.0143	0.0143	0.5071		0.0018
No. 6 Oil Fired lb./M gal.	5	-	55	-	10	10	10	78.5	-	1.28
Converted to lb./MM Btu assuming 150,000	0.0333 Btu/gal.	÷	0.3667	-	0.0667	0.667	0.667	0.5233	_	0.0085

Please Note: The above table is extrapolated from the tables as supplied by the Iowa Department of Natural Resources, Air Quality Board and are contained within the full reference from the U.S. Federal Environmental Protection Agency AP-42 Publication (7/98).

The gross calorific and net calorific values for tallow as 39,090 kJ/kg and 36,200 respectively and for HFO

*kJ/kg and 38,830 respectively. These values represent 22 percent the gross heating value and 90.5 percent the net heating value for tallow as compared to HFO.

Choice White Grease/Lard

Work completed at Penn State University reported the data in Tables 3 and 4 on fuel analysis, combustion, and emissions data, all of which are very favorable when compared to the No. 6 fuel oil standard.

Poultry Fat

Data summarized on the use of poultry fat as a burner fuel for replacement for both natural gas and fuel oil indicates very satisfactory performance and, in general, provides for a cleaner burning fuel than the comparative. Average Fuel Characteristics of Poultry Fat

, et de l'account	•	
Carbon	73.6%	
Hydrogen	7.68%	
Nitrogen	0.06%	
Oxygen	18.6%	
Ash	0.1%	
Sulfur	<.02%	
Heating Value BTU/lb.	16,790	
(man 16 220 to 16 010)		

(range 16,230 to 16,910)

Note: Due to the low analysis of both sulfur and remember of fat, the production of nitric oxide/ nit. — n dioxide and sulfur dioxide emissions is expected to be extremely favorable for the emissions data as determined by stack and chamber analyses.

Table 2. Particulate Emissions

Fuel		Tallow	HFO
Duration	mins	60	60
Flue Temperature	$^{\mathrm{o}}\mathrm{C}$	246	239
Mean Gas Velocity	m/s	22.3	21.4
Volume Flow Rate of Gase	S		
(a) At Duct Conditions	m³/hr.	27391	26410
(b) At STP	m³/hr.	14671	14324
(c) At STP, 3%O ₂ , dry	m³/hr.	-	11960
(d) At STP, 11%O ₂ , dry	m³/hr.	20273	21596
Mass Flow Rate of Gases	kg hr1	18340	17905
Concentration of Particular	es in Waste (Gases	
(a) At Duct Conditions	mg/m³	8	95
(b) At STP, 3%O ₂ , dry	mg/m³	-	216
(c) At STP, 11%O ₂ , dry	mg/m³	40	116
Particulate Burden	kg/hr.	0.20	2.96
Carbon Content of Dust	%	<1.0	84.4

⁽a) m3/hr. Mass flow rate of gases kg hr. 1

Emissions Summary

Data is available for firing rates ranging from 100 percent thru 30 percent at 10 percent increments. Stack temperature averaged 474 degrees Fahrenheit (F) at the 100

Continued on page 20

⁽b) m³/hr. Concentration a b c mg/m³

⁽c) m3/hr. Particulate kg/hr.

⁽d) m³/hr.

percent firing rate and 352 degrees F at the 30 percent rate. There appeared to be little difference in the emissions data through an apparent reduction in NO_x at the lower firing rate (stack temperature). As previous, the lack of nitrogen components in fat indicates that the generation of any NO_x is the result of combustion.

	100% Firing Rate	30% Firing Rate
Carbon Monoxide	0 ppm	0 ppm
Carbon Dioxide	8.6%	6.5%
Hydrocarbons	0 ppm	0 ppm
Excess Air	16%	51%
Nitric Oxide (NO_x)	97 ppm	52 ppm
Nitrogen Dioxide	0 ppm	0 ppm
Sulfur Dioxide (SO _x) 0 ppm	0 ppm

In summary, poultry fat can be considered to be an extremely environmentally friendly alternative burner fuel.

Yellow Grease

Stack tests completed and reported have likewise illustrated an environmentally friendly fuel source as derived from used cooking oils and restaurant grease. Similarly the fuel and burn characteristics have been entirely satisfactory. The following is illustrative of data using 100 percent recycled yellow grease with no additives.

Broiler/Burner Description

Manufacturer: Nebraska Boiler Company

Table 3. Fuel Analysis

Ser	ni-Finished Lard	Finished Lard	Choice White Grease	No. 6 Fuel Oil
Ultimate Analysis (%, as fired) ^a				100.01
Carbon	77.7	77.4	77.9	85.8
Hydrogen	12.0	11.5	13.6	12.1
Nitrogen	0.4	0.6	0.2	0.6
Sulfur	0.0	0.1	0.2	1.5
Oxygen (by difference)	9.9	10.4	8.1	-
Heating Value (Btu/lb. as fired)	16,941	16,990	16,977	18,454
Viscosity (cSt) ^b				
100°F	70	97	91	1.357^{c}
120°F	23	25	26	520
140°F	17	17	17	232
160°F	-	-	13	128
Boiling Points (°C) d				
<260	0.7	0.8	0.5	8.9
280 to 450	5.1	1.9	20.9	29.3
450 to 540	1.8	1.1	11.6	12.5
540 to 700	91.6	95.3	65.6	38.3
> 700	0.3	0.3	0.9	9.8

^a Fuel oil analysis normalized to zero percent oxygen because oxygen, by difference, as = 0.6 percent.

Type Boiler: Water Tube "D" style package steam

generating boiler

Serial Number: 2D-1719
Date of Manufacture: 1976
Burner Manufacturer: Coen
Boiler Rated Horsepower: 725

British Thermal Units (Btus): 17,469 Btus/lb. Method

ASTM D240-87

Combustion Analyses	Run 1	Run 2	Run 3
Stack Temperature	558°F	549°F	571°F
Stack Gas Velocity (ft/min.)	1,038	1,043	1,064
Stack Flow Rate (acfm)	7,337	7,371	7,520
Stack Flow Rate (dscfm)	3,439	3,513	3,452
CO Emissions (ppm)	34.7	44.8	27.9
VOC Emissions (ppm)	1.7	1.6	1.7
NO _x Emissions (ppm)	69.0	70.2	69.2
SO ₂ Emissions (ppm)	1.4	1.3	1.4
*TSP Emissions Rate (gr/dscf)	0.0330	0.0309	0.0374
Opacity (%):	0.0		

(*Total Suspected Particulate)

Firing Rate: (range during three tests): 133 gal./fu. x 139,700 Btus/gal. = 18.6 million Btus/hr.

171 gal./hr. x 139,700 Btus/gal. = 23.9 million Btus/hr.

Fat preheated 188 degrees F to 208 degrees F for burning stack tests.

A further analysis of comparing the use of yellow grease on the basis of converted factors of pounds per million (MM) Bus of emissions compared to the respective fuels is shown in Table 5, indicating quite satisfactory results.

Price Comparison

The cost benefits for utilizing fats as burner fuels are of course directly related to the cost comparison of the respective fuels. Geographic pricing relationships as well as the variances between the energy efficiency of individual burners and burner fuel influences the comparative analyses. The following only serves as a model for comparing the respective fats to those of natural gas, No. 2 fuel oil, and No. 6 fuel oil at given prices and the assumption of Btu efficiency and densities of the respective products. The costs per million Btu values were compared to a base of 100 assigned to natural gas. Thus as an illustration, yellow grease is projected to be 70.78 percent the costs per million Btu as compared to natural gas when using the assumptions set forth.

From this basic point in time comparison, the illustration that incedible tallow, choice white grease, and yellow grease are current cost effective burner fuel alternatives is very evident in Table 6.

Measured using a Brookfield DVIII viscometer, a #21 spindle, and a spindle speed of 75 rpm.
 Measured using a Brookfield DVIII viscometer, a #21 spindle, and a spindle speed of 15 rpm.

^d Measured using a Hewlett Packard 5890 plus high temperature gas chromatograph fitted with a Restek MXT-500 sifiosteel column and connected to a FID.

Resource Supply of Product

Total animal fats/oils, including those derived from used cooking oils/restaurant grease, in the United States is estimated at 11.25 billion pounds. The total is derived from the estimated billion pounds 1.5 edible tallow, 3.2 inedible llow, 1.8 rendered grease, 2.0 poultry fat, and 2.75 yellow se. The 2.75 billion pounds of yellow grease recycled illy in the United States primarily by the rendering industry is based on approximately nine pounds generated per population and approximately 6,300 pounds available from each food service unit. The total animal fats/recycled

Table 4. Combustion and Emissions

		Finished	Semi- Finished
	No. 6 Fuel Oil	Lard (Overall)	Lard (Overall)
Length of Test (hr.)	0.65	5.90	2.53
Fuel Injection Temperature (°F)	140	130	130
Fuel Firing Rate (million Btu/hr	.) 1.74	1.74	1.72
% O ₂	2.2	2.0	2.2
% CO ₂	14.4	14.7	14.6
ppm CO @ 3% O ₂	111	145	147
ppm NO _x @ 3% \tilde{O}_2	395	137	135
ppm SO ₂ @ 3% O ₂	784	0	0
Zone 1 Air Temperature (°F)	353	350	366
Zone 2 Air Temperature (°F)	752	780	735
Quarl Temperature-Bottom (°F)	1,041	847	887
Quarl Temperature-Top (°F)	1,042	855	897
Economizer Inlet Temperature (°	F) 519	556	518
team Temperature (°F)	364	379	364
S'm Generation Rate (lb/hr.)	1,266	1,286	1,277
lo Air (lb/hr.)	1.459	1,429	1,412
Zone I Air (% of total)	58%	58%	58%
Zone 2 Air (% of total)	33%	34%	34%
Atomizing Air (% of total)	7%	6%	6%
Cooling Air (% of total)	2%	2%	2%

oils and greases represent about one-third the total of the largest oil generating industry in the United States, that of soybean production.

Summary

Animal fats and the resources of recycled cooking oils and restaurant greases have long been recognized for their valuable energy contributions to livestock, poultry, domestic animal, and a variety of other animal diets. Research supported by FPRF has historically, since 1962, provided scientific data to support these uses. Further, FPRF has been involved in both research and initiatives for the utilization of these resources as alternative fuel sources. FPRF has been a charter member of the National Soy Diesel Development Board (National Biodicsel Board) since 1992. It remains an associative directorship and cooperates in the research efforts to commercialize biodiesel. These initiatives have certainly brought biodiesel into prominence as a very viable alternative fuel and its gallonage sales increases annually.

Most recently FPRF has been extremely active in conveying the importance of rendered animal products as resources for biofuel/bioenergy production. As has been pointed out on numerous occasions, research efforts, incentives, and subsidies have favored sources derived from plant origins. These activities have often been at the exclusion of animal origin products.

This current summary for the use of animal fats/greases as burner fuel usage offers an opportunity as effective environment and economic alternatives to meet the burner fuel crisis that is upon us now. Numerous facilities are in the process of acquiring air quality permits and active in interacting with local and state environmental regulators. There have been numerous air quality permits issued for using animal rendered fats in a variety of facilities. Reports for utilizing from 15 percent to exceeding 30 percent of products processed in given plants as the internal energy

Continued on page 51

Table 5. Converted Factors IbJMM Btu

Natural Gas Fired	Source	Units	PM-10	PM	VOC	NO_x	SO,	CO
Small Boilers								
<100 MM Btu/hr.	AP-42 7/98	lb./MM cf	7.6	7.6	5.5	100	0.6	84
Converted Factors*		lb./MM Btu	0.0072	0.0072	0.0052	0.0952	0.0006	0.0800
No. 2 Distillate Oil								
<100 MM Btu/hr.	AP-42 9/98	lb./M gal.	2	2	0.252	20	71ª	5
Converted Factors**	k	lb./MM Btu	0.0143	0.0143	0.0018	0.1429	0.5071	0.0357
No. 6 Residual Oil								
<100 MM Btu/hr.	AP-42 9/98	lb./M gal.	10	10	1.28	55	78.5 ^b	5
Converted Factors**	**	lb./MM Btu	0.0667	0.0667	0.0085	0.3667	0.5233	0.0333
Yellow Grease								
<100 MM Btu/hr. – fat	Stack Test Results	lb./hr.	1.0033	1.0033	0.0367	1,7267	0.0500	0.5
Converted Factors		lb./MM Btu	0.0414	0.0414	0.0015	0.0712	0.0021	0.0224

onversion used 1,050 Btu/ft3

conversion used 140,000 Budgal.

version used 150,000 Btu/gal.

[&]quot;e. aion factor is $142 \times \%$ sulfur, $142 \times 0.5 = 71$

^b emission factor is 157 x % sulfur, 157 x 0.5 = 78.5

TABLE 2-2. EMISSION DATA SUMMARY -- BOILER 3, DIESEL*

Client: Source HC & S

Boiler 3 Diesel

O₂ Corr. Factor (%)

3

Standard Temp. (°F)

68	

Run #	3	<u> </u>	4	Average
Date	(6.40.4-62	16-0ct-02	!6-Oct-02	
Test Condition	346.2 MMBruhr	340.0 MMBhrhr	340.6 MMBm/hr	342.3 MMBnv/i
Barometric Pressure ("Hg)	29.55	29,55	29.55	29,55
Stack Pressure ("Hg)	29.54	29.54	29.54	29,54
Stack Area (ft ²)	78.54	78.54	78.54	78.54
Sampling Time (min.)	0.66	60.0	60 0	60.00
Volume Gas Sampled (escf)	47 432	at: 016	41 212	44,887
F-Factor	800036	8968 22	8938. 9 6	8959.21
Fuel Flow (lb/hr)	17554	17324	17314	174!1
Gas Data	a yan karin ili dang aj daran digunakan kari dan dan dangga digun dan di hili daran manakan.			
Average Gas velocity (fps)	23.79	23.31	22.07	23.06
Average Gas Temperature (°F)	107.92	117,08	117.29	114.10
Gas Flowrate (dscfm)*	94412	88582	83769	88921
Gas Analysis (Volume %)				
Caroon Dioxide	7.71	8.45	7.67	7.94
Oxygen	10.33	9.46	10.45	10.08
Water	8.27	13.74	10.80	9.94
Emission Concentration				
Filterable Particulate (gr/dscf)	0.0216	0.0182	0.0195	0.0198
CO (ppm)	15.44	10.63	8.73	03,11
SO₂ (ppm)	2.92	3.01	2.94	2.96
NO _x (ppm as NO ₂)	56.37	61.21	54.81	57.46
Emission Rate - lb/br				
Filterable Particulate	17.45	13.83	13.99	15.09
CO	6.55	4.11	3.19	4.55
SO ₂	2.75	2.66	2.46	2.63
NOx as NO ₂	38.13	38.85	32,90	36,63
Emission Factor - 1b/MMBtu				
Filterable Particulate	0.0546	0.0427	0.0498	0.0490
CO	0.0199	0.0127	0.0114	0.0146
SO₂	0.0086	0.0082	6,0088	0.0085
NO _x as NO ₂	0.1194	0.1198	0.1171	0.1188
Emission Concentration @ Oz Cor	rection	and the state of t		
CO (ppm)	26.14	765 t/3	ı ∔ .96	19.24
SO2 (ppm)	4.0%	4.72	5 04	4,90
NOx (ppm as NO ₂)	95.47	05.73	93.9 2	95 05

^{*} Measured Flowrates

TABLE 2-3. EMISSION DATA SUMMARY — BOILER 3, DIESEL*

Chent:

HC & S

Source:

Boiler 3 Diesel

O₂ Corr. Factor (%)

3

Standard Temp. (°F)

68

Date	Ru n ≠	?	3	4	Average
Test Condition			16-OLI-02	16-Oct-02	
Barometric Pressure ("Hg) 29.55 29.55 29.55 29.55 Suck Pressure ("Hg) 29.54 29.54 29.54 29.54 29.54 Szeck Area (ft²) 78.54 78.			340,0 MMBtariu	340 6 MMBtu/hr	342.3 MMBni/hi
Suck Pressure ("Hg)		29.55	29 55	29.55	29.55
Sizek Area (ft²) 78.54 7			29.54	29.54	29.54
Sampling Time (min.) 60.0 60.0 60.0 60.00 Volume Gas Sampled (dscf) 47.432 46.016 41.212 44.887 F-Factor 8970.46 8968.22 8938.96 8959.21 Freactor 17594 17324 17314 17411 Gas Data Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas Temperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101924 92558 101126 98539 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume '8) Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) </td <td>_ '</td> <td>78.54</td> <td>78.54</td> <td>78.54</td> <td>78.54</td>	_ '	78.54	78.54	78.54	78.54
Volume Gas Sampled (dscf) 47.432 46.016 41.212 44.887 F-Factor 8970.46 8568.22 8938.96 8939.21 Fuel Flow (lb/nt) 17594 17324— 17314 17411 Gas Data Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas remperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume %) Carbon Dioxide 77.1 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 2.92 7.01 2.94 2.96 NO, (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - lb/nr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO ₂ 2.77 2.78 2.97 2.91 CO 3.06 8.7 4.79 3.85 5.00 SO ₂ 2.77 2.78 2.97 2.91 CO 3.07 4.17 40.60 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0540 0.0227 0.0498 9.0490 CO 4.0195 0.0086 0.0082 0.0088 0.0085 NO, as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 4.95 4.472 5.544 4.99			60.0	60.0	60.00
F-Factor 8970.46 8968.22 8938.96 8959.21 Fuel Flow (Ib/nr) 17594 17324 17314 17411 Gas Data Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas Temperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101904 92558 101126 98539 Gas Analysis (Volume *%) Carbon Dioxide 7.71 8.45 7.67 7.94 Carbon Dioxide 7.71 8.45 7.67 7.94 Carbon Dioxide 8.27 10.79 10.80 9.94 Emission Concentration Filterable Particulare (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 1.544 10.63 8.73 11.60 SO2 (ppm) 2.92 2.01 2.94 2.96 NO2 (ppm as NO2) 56.37 61.21 54.81 57.46 Emission Rate - Ib/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO (50 6.87 4.29 3.85 5.00 SO2 2.97 2.78 2.97 2.91 NOX 20 38 NO2 41.17 40.60 39.72 40.50 Emission Factor - Ib/M.MBru Filterable Particulate 9.0540 0.0427 0.0498 0.0490 CO (50 0.0686 0.0082 0.0088 0.0085 NO2 as NO2 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O2 Correction Emission Concentration @ O2 Correction CO (ppm) 2.614 16.63 14.96 19.24 Emission Concentration @ O2 Correction CO (ppm) 2.614 16.63 14.96 19.24 Emission Concentration @ O2 Correction CO (ppm) 2.614 16.63 14.96 19.24 Emission Concentration @ O2 Correction CO (ppm) 2.614 16.63 14.96 19.24 Emission Concentration @ O2 Correction CO (ppm) 4.99 4.72 5.94 4.90	- •		46.016	41.212	44.887
Fuel Flow (Ib/hr) 17594 17324 17314 17411 Gas Data Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas resperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume %) Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulare (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO2 (ppm) 2.92 2.01 2.94 2.96 NO4 (ppm as NO2) 56.37 61.21 54.81 57.46 Emission Rate - Ib/hr Filterable Particulare 18.84 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO3 2.77 2.78 2.97 2.91 NOX. 25.NO2 41.17 40.60 39.72 40.50 Emission Factor - Ib/MMBtu Filterable Particulate 9.6540 0.0427 0.0498 9.0490 CO 6.0199 0.0086 0.0082 0.0088 0.0085 NO4 as NO2 0.1194 0.1198 0.117 0.0114 CO (ppm) So NO2 0.0086 0.0082 0.0088 0.0085 NO4 as NO2 0.1194 0.1198 0.1198 0.1191 0.1188 Emission Concentration @ O2 Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.99 4.72 5.04 4.90 CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.99 4.72 5.04			8968.22	8938.96	8959.21
Ges Data Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas velocity (fps) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume *%) 7.71 8.45 7.67 7.94 Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration 50.0198 0.0195 0.0198 Colygen 15.44 10.63 8.73 11.60 SO ₂ (ppm) 2.92 7.01 2.94 2.96 NO ₄ (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/hr 51.88 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ - 2.72 2.72 2.97 2.91 N				17314	17411
Average Gas velocity (fps) 25.79 23.31 22.07 23.06 Average Gas Temperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume '%) Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 2.92 7.01 2.94 2.96 NO _X (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ 2.77 2.78 2.97 2.91 NO _X as NO ₂ 41.17 40.60 39.72 40.50 Emission Factor - Ib/MMBru Filterable Particulate 9.644 0.0427 0.0498 0.0490 Emission Factor - Ib/MMBru Filterable Particulate 9.0540 0.0082 0.0088 0.0490 CO 9.0194 0.0118 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 4.95 4.72 5.94 4.96		The state of the s	anna mang programma and the angular grad grad grad to the communities and comm		
Average Gas Temperature (°F) 107.92 117.08 117.29 114.10 Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume %) Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO2 (ppm) 2.92 7.01 2.94 2.96 NO2 (ppm 8 NO2) 56.37 61.21 54.81 57.46 Emission Rate - Ib/rs Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO2 2.97 2.75 2.75 2.97 2.91 NO2 as NO2 41.17 40.60 39.72 40.50 Emission Factor - Ib/MYBfu Filterable Particulate 9.0548 0.0427 0.0498 9.0490 CO 0.0199 0.0127 0.0114 0.0146 SO2 0.0085 0.0085 0.0082 0.0088 0.0085 NO3 as NO2 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O2 Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.94 4.90		25.79	23.31	22.07	23.06
Gas Flowrate (dscfm)* 101934 92558 101126 98539 Gas Analysis (Volume %) 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 0.0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO₂ (ppm) 2.92 7.01 2.94 2.96 NO₂ (ppm as NO₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/re 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO₂ 2.97 2.78 2.97 2.91 NO₂ as NO₂ 41.17 40.60 39.72 40.50 Emission Factor - Ib/MYBru 50.00 0.0427 0.0498 0.0490 CO 0.0086 0.0082 0.0088 0.0085	-		117.08-	117.29	114.10
Gas Analysis (Volume %) Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen 10.33 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration **** **** 0.0195 0.0198 Filterable Particulare (gr/dscf) 0.0216 9.0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO₂ (ppm) 2.92 7.01 2.94 2.96 NO₄ (ppm as NO₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/br *** 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO₂ - 2.79 2.79 2.91 2.91 NO₂ as NO₂ 41.17 40.60 39.72 40.50 Emission Factor - Ib/MYBru ** 0.0427 0.0498 0.0490 CO 0.0196 0.0127 0.0114 0.0146 <		101934	92558	101126	98539
Carbon Dioxide 7.71 8.45 7.67 7.94 Oxygen i0.33 9.46 10.45 10.08 Water 8 27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 9.0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO ₂ (ppm) 2.92 2.01 2.94 2.96 NO _X (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/br Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO ₂ - 2.77 2.79 2.97 2.91 NO _X as NO ₂ 41.17 40.60 39.72 40.50 Emission Factor - Ib/MYBtu 50.0427 0.0498 9.0490 CO 6.0199 0.0127 0.0114 0.0146 SO ₂ 0.0085 0.0082 0.0088 0.0085 <					
Oxygen (0.33) 9.46 10.45 10.08 Water 8.27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0.0216 9.0182 0.0195 0.0198 CO (ppm) 15.44 10.63 8.73 11.60 SO₂ (ppm) 2.92 3.01 2.94 2.96 NO₂ (ppm as NO₂) 56.37 61.21 54.81 57.46 Emission Rate - lb/br Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO₂ - 2.97 2.38 2.97 2.91 NO₂ as NO₂ 41.17 40.69 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0546 0.0427 0.0498 9.0490 CO 0.0199 0.0127 0.0114 0.0146 SO₂ 0.0085 0.0082 0.0088 0.0085 NO	▼	7.71	8.45	7.67	7.94
Water 8 27 10.74 10.80 9.94 Emission Concentration Filterable Particulate (gr/dscf) 0 0216 0 0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO ₂ (ppm) 2.92 3.01 2.94 2.96 NO _x (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - Ib/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ 2.97 2.97 2.91 NO _x as NO ₂ 41.17 40.60 39.72 40.50 Emission Factor - Ib/MMBtu Filterable Particulate 9.0540 0.0427 0.0498 9.0490 CO 6.0199 0.0127 0.0114 0.0146 SO ₂ 0.0086 0.0082 0.0088 0.0085 NO _x as NO ₂ 6.1194 0.1198 0.1171 0.11		70.33	9.46	10.45	10.08
Emission Concentration Filterable Particulate (gr/dscf) 0 0216 0 0182 0.0195 0.0198 CO (ppm) 15.44 10.03 8.73 11.60 SO ₂ (ppm) 2.92 3.01 2.94 2.96 NO _x (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - lb/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ ————————————————————————————————————	• •	8.27	10.74	10.80	9.94
15.44 10.63 8.73 11.60		The second secon	and the control of th		
SO ₂ (ppm) 2.92 3.91 2.94 2.96 NO _x (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - lb/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ 2.97 2.78 2.97 2.91 NO _x as NO ₂ 41.17 40.60 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0546 0.9427 0.0498 9.0490 CO 0.0199 0.0127 0.0114 0.0146 SO ₂ 0.0085 0.0082 0.0088 0.0085 NO _x as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration © O ₂ Correction CO (ppm) 26.14 4.63 14.96 19.24 SO ₂ (ppm) 4.99 4.72 5.04 4.90	Filterable Particulate (gr/dscf)	0.0216	0.0182	0.0195	
SO2 (ppm) 2.92 2.01 2.94 2.96 NOx (ppm as NO2) 56.37 61.21 54.81 57.46 Emission Rate - lb/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO2 2.97 2.97 2.97 2.91 NOx as NO2 41.17 40.60 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0546 0.0427 0.0498 9.0490 CO .0199 0.0127 0.0114 0.0146 SO2 0.0085 0.0082 0.0088 0.0085 NOx as NO2 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O2 Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	CO (ppru)	15.44	10.63		
NO _x (ppm as NO ₂) 56.37 61.21 54.81 57.46 Emission Rate - lb/hr Filterable Particulate 18.84 14.46 16.89 16.73 CO 6.87 4.79 3.85 5.00 SO₂		2.92	3.01	2.94	2.96
Filterable Particulate 18 84 14.46 16.89 16.73 CO 6.87 4.29 3.85 5.00 SO ₂ ————————————————————————————————————		56.37	61.21	54.81	57.46
CO 6.87 4.29 3.85 5.00 SO ₂					
SO ₂ 2 97 2.78 2.97 2.91 NOx as NO ₂ 41.17 40.60 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0546 0.0427 0.0498 9.0490 CO	Filterable Particulate	18 84	14.46	16.89	16.73
SO2	CO	6.87	4.29	3.85	5.00
NOx as NO2 41.17 40.68 39.72 40.50 Emission Factor - lb/MMBtu Filterable Particulate 9.0546 0.0427 0.0498 9.0490 CO 0199 0.0127 0.0114 0.0146 SO2 0.0086 0.0082 0.0088 0.0085 NO _x as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90		2 97	2.79		2.91
Emission Factor - lb/MMBtu Filterable Particulate 9 0546 0.0427 0.0498 0.0490 CO 0199 0.0127 0.0114 0.0146 SO2 0.0086 0.0082 0.0088 0.0085 NO _x as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	NOx as NOs	41.17	40.69	39 72	40,50
CO0199 0.0127 0.0114 0.0146 SO ₂ 0.0086 0.0082 0.0088 0.0085 NO ₄ as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 26.14 16.63 14.96 19.24 SO ₂ (ppm) 4.95 4.72 5.04 4.90		According to the control of the professional property and the control of the cont			
SO ₂ 0.0086 0 0082 0.0088 0.0085 NO ₂ as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	Filterable Particulate	9.0546	0.0427	0.0498	9.0490
SO2 6.505 NO _x as NO ₂ 6.1194 0.1198 0.1171 0.1188 Emission Concentration @ O2 Correction CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	co	√019 9	0.0127	0.0114	
NO _x as NO ₂ 0.1194 0.1198 0.1171 0.1188 Emission Concentration @ O ₂ Correction CO (ppm) 26.14 46.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	SO ₂	0.0085	0 0082	8800.0	
Emission Concentration @ O2 Correction CO (ppm) 26:14 46.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	_	0.1194	0.1198	0.1171	0.1188
CO (ppm) 26.14 16.63 14.96 19.24 SO2 (ppm) 4.95 4.72 5.04 4.90	The same of the sa	rrection			
SO2 (ppm) 4.95 4.72 5.04 4.90			16.63	14.96	19.24
00.00	·		4.72	5.04	4.90
	NOx (ppm as NO ₂)	95.43	95,78	93.92	95.05

^{*} Calculated Flowrates

TABLE 2-4. EMISSION DATA SUMMARY — BOILER 3, COOKING OIL*

Client: Source: HC & S

Boiler 3 Cooking Oil

O2 Corr. Factor (%)

3

Standard Temp. (°F)

36

Ru n #	5	6	7	Average
Date:	18-Oct-02	18-00-02	18-Oct-02	
Test Condition	323.1 MMBra/ru	316.4 MMBm/hz	293.2 MMBni/hr	316.9 MMBm/h
Barometric Pressure (*Hg)	29 65	29.65	29.65	29.65
Stack Pressure ("Hg)	29.64	29.64	29.64	29.64
Stack Area (ft ²)	78,54	78.54	78.54	78.54
Sampling Time (mir.)	60.0	60.0	60.0	60.06
Volume Gas Sampled (dscf)	44.446	47,795	45.614	45.952
F-Factor	9000,15	9217.13	9424.67	9213.99
Fuel Flow (Ib/hr)	19240	18875	17581	18565
Gas Dinta	Administrative () () () () () () () () () (
Average Gas velocity (fps)	22.08	24.15	23.20	23.14
Average Gas Temperature (°F)	114.13	119.54	119.67	117.78
Gas Flowrate (dscfm)*	85453	91381	87288	88040
Gas Analysis (Volume %)				
Carbon Dioxide	9.64	8.53	8.71	8.62
Oxygen	9.92	9.75	9.56	9.74
Water	9 85	11.03	11.51	10,80
Emission Concentration				
Filterable Particulate (gr/dscf)	0.9214	0.0120	0.0105	0.0146
CO (ppm)	87.70	46.13	42.08	58.63
SO ₂ (ppm)	0.03	0.03	9.04	0.03
NO _x (ppm as NO ₂)	67.06	70.25	75.17	70.83
HC >C ₁ (ppm)	5.80	11.08	14.62	10.50
Emission Rate - lb/br				
Filterable Particulate	15.67	9.41	7 85	10.98
co	32.69	18.38	16.02	22,36
5O ₂	0.03	0,03	0.03	0.03
NOx as NO ₂	41.06	46 00	47,02	44.69
HC > C ₁	1.24	2.53	3.19	2.32
Emission Factor - lb/MMBtu				
Filterable Particulate	0.0524	0.0297	0.0261	0.0360
со	0.1093	0.0579	0.0532	0.0735
SO ₂	0.0001	0.0001	0.5001	0.0001
NO _x as NO ₂	0 1373	0.1450	0.1560	Ü.146!
HC > C:	0.0041	0.0080	0 0106	0.0076
Emission Concentration @ O2 Co	orrection	er en gen kameren iginar magaagsaa gilimilianisis biin anki Printi ilikili ilikili ilikili ilikili ilikili ilik		
CC (ppin)	143.01	74.03	66,42	94.49
SO2 (ppm)	0.05	0.05	0.06	0.05
NOx (ppm as NO ₂)	109,33	112.79	113 65	113.60
HC >Cl (ppm)	9.46	17,79	23.08	16,77

^{*} Measured Flowrates

TABLE 2-5. EMISSION DATA SUMMARY -- BOILER 3, COOKING OIL*

Client:

HC & S

O2 Corr. Factor (%)

3 68

Boiler 3 Cooking Oil Source:

Standard Temp. (°F)

Run#	5		7	Average
Date	18-Oct-02	18-Oc1-02	18-Oct-02	
Test Condition	323.1 MMBte/ir	316.4 MMBm/hr	293.2 MMBn/hr	310.9 MMBn1/hr
Barometric Pressure ("Hg)	29.65	29.65	29.65	29.65
Stack Pressure ("Hg)	29.64	29.64	29.64	29.64
Stack Area (fi ²)	78.54	78.54	78.54	78.54
Sampling Time (min.)	60.0	60.0	60.0	60.00
Volume Gas Sampled (dsof)	44.446	47.795	45.614	45.952
F-Factor	9000.15	9217.13	9424.67	9213.99
Fuel Flow (lb/hr)	19240	18875	17581	18565
Gas Data	والمراقبة والمراقبة والموافقة والمراقبة والمراقبة والمراقبة والمراقبة والمراقبة والمراقبة والمراقبة والمراقبة			
Average Gas velocity (fps)	22 08	24.15	23.20	23.14
Average Gas Temperature (°F)	114.13	119.54	119.67	117.78
Gas Flowrate (dscfm)*	91948	90809	84599	89119
Gas Analysis (Volume %)				
Carbon Dioxide	8.64	8.53	8.71	8.62
Oxygen	9.92	9.75	9.56	9.74
Water	9.85	11.03	11.51	10.80
Emission Concentration				
Filterable Particulate (gr/dscf)	0.0214	0.0120	0.0105	0.0146
CO (ppm)	87.70	46.11	42.08	58.63
SO ₂ (ppm)	0.03	0.03	0.04	0.03
NO _x (ppm as NO ₂)	67.06	70. 2 5	75.17	70.83
HC >C ₁ (ppm)	5,80	11.08	14.62	10.50
Emission Rate - lb/hr				
Filterable Particulate	15.6?	9.41	7.85	10.98
CO	35.18	18.27	15.53	22.99
\$O₂	0.03	0.03	0 03	0.03
NOx as NO ₂	44.18	45 71	45,57	45.15
HC > C;	1.33	2.51	3.09	2.31
Emission Factor - lb/MMBru				
Filterable Particulate	0.0524	0.0297	0.0261	0.0360
CO	0.1093	0.0579	0.0532	0.0735
SO ₂	1000.0	0.0001	0.0001	0.0001
NO _x as NO ₂	0.1373	0.1450	0.1560	0.1461
$HC > C_1$	9.0041	0,00 86	9.0106	0.0076
Emission Concentration @ 0, Co	rrection			
CO (ppm)	143.01	74 03	66.42	94.49
SO2 (ppm)	0.05	0.05	0.06	0.05
NOx (ppm as NO ₂)	109.35	112.79	118.65	113.69
HC >C1 (ppm)	9.46	17.79	23.08	16.77

^{*} Calculated Flowrates

2.5. Ultimate Analysis and Heating Value

PSC Analytical Services, Reading, PA analyzed a total of (33) biofuel, biofuel/fuel oil blends and fuel oil samples to establish their comparative combustion chemistry and heating values. (All biofuel blends consist of 33% biofuel and 67% No. 2 fuel oil.) PSC used standard ASTM test methods for all analyses. PSC is certified/ accredited by the USEPA, NIOSH, the US Corp of Engineers, and (12) states.

Table 3, Fuel Energy Content and Ultimate Analysis 1								
Fuel	Energy Content, Btu/Lb.	Ash	Carbon	Hydrogen	Nitrogen	Oxygen	Sulfur	Moisture
Chicken Fat	16,873	0.14%	75.3%	11.4%	0.04%	13.1%	0.006%	(trace)
Chicken Fat - Fuel Oil Blend	18,223	0.02%	82.7%	12.2%	0.06%	3.83%	0.12%	(trace) (trace)
Yellow Grease	16,899	0.02%	76.4%	11.6%	0.03%	12.1%	0.005%	` ,
Yellow Grease - F.O. Blend	18,543	0.01%	80.2%	11.6%	0.07%	8.01%	0.13%	(trace)
Choice White Grease	16,893	0.08%	76.5%	11.5%	0.05%	11.6%	0.007%	(trace) (trace)
Ch. Wht. Grease - F.O. Blend	18,493	0.01%	82.2%	12.1%	0.09%	5.48%	0.007%	' '
Tallow	16,920	0.03%	76.6%	11.9%	0.02%	11.4%	0.003%	(trace)
Tallow Fuel - Oil Blend	18,523	0.06%	80.7%	11.9%	0.01%	7.22%	0.003%	(trace)
No. 2 Fuel Oil	19,237	0.02%	84.0%	11.9%	0.01%	3.78%	0.15%	(trace) (trace)
1) PSC Analytical Services, Reading, PA								

2.6. General Characterization

The Material Safety Data Sheets (MSDS) included in the Appendix indicate that the fats and greases tested are neither hazardous nor explosive. From the test team's experience, these fats and greases have a distinct and unpleasant odor. However, their volatility is low and the odors do not diffuse readily.

Reports from industry indicate that chicken fat is very miscible in fuel oil and does not readily separate in solution. The test team subjectively confirmed miscibility during the demonstration project; however, definitive data was not collected.

2.7. Discussion

Preliminary laboratory analyses indicated that fats and greases could be used with the No. 2 boiler burner nozzle and that the fuel handing system designed for the test program could easily handle these biofuels. Actual combustion testing demonstrated these findings. Later testing confirmed that biofuels, both singly and blended, have high heating value, low ash, and low sulfur content. Heating values for the biofuel blends tested are within 95% of the heating value of No. 2 fuel oil.

AAC used a sampling train consisting of a stainless steel nozzle, stainless steel union, stainless steel lined probe, glass filter holder with Teflon filter support, four glass impingers, umbilical cord, vacuum pump, dry gas meter and orifice. Both the probe and filter compartment were heated to 250 deg. F. The impingers were placed in an ice bath to remove moisture from the sample gas stream. A "S" type pitot tube and an inclined manometer measured the gas velocity pressures. A type K thermocouple and a digital thermometer measured the gas temperature. The Denver Instruments Model A-250 analytical balance in the AAC laboratory weighed the particulate samples.

In accordance with US EPA Method 19 (40CFR60), AAC calculated fuel F-Factors using the fuel analysis data presented in Section 3 of this report. F-Factors are used to calculate emission rates in pounds per million Btu, per US EPA methodology.

The US EPA "F Factor" technique is a more convenient method to determine emissions on a mass per unit heat input basis. This technique allows the calculation of emissions without the need for precise measurement of fuel flow and combustion efficiency.

Table 4, F-Factors					
Fuel	F-Factor, Fd				
Chicken Fat	8,865				
Yellow Grease	9,108				
Choice White Grease	9,145				
Tallow	9,179				
No. 2 Fuel Oil	8,850				
Source: Advanced Air Consultants, Ir	nc., Murrayville, GA				
Fd is the ratio of the quantity of dry effluent gas generated by combustion to the gross calorific value of the fuel, dscf/10 ⁶ Btu.					
Ref.: Federal Register , 40:194, Part V, Oct. 6, 1975,					

AAC also monitored smokestack opacity. Maximum opacity with chicken fat was 4% and yellow grease was 6%. There was no opacity observed while burning tallow. Opacity was not monitored while burning choice white grease.

Opacity testing was not performed in strict accordance with GA EPD compliance regulations, which require an average value for a series of opacity observations over a one-hour period. Instead, opacity testing during the program consisted of a series of spot observations. However, all opacity readings were taken by GA EPD-certified opacity readers.

Fig. 15, NO_x Emissions

Fuel/FGR Operation

- 1) All tests were conducted at maximum boiler load.
- 2) Error bars show std. error calculated for cases: CB with FGR (n=2) and T w/o FGR (n=3). 2% error assumed for all of the other cases.

Fuel	Legend	NOx emissions, ppm			Furnace Temperature, deg. F.		
		w/o FGR	w. FGR	% reduction	w/o FGR	w. FGR	delta
N	NATURAL GAS	80	54	32.5%	1,983	2,010	27
Υ	YELLOW GREASE	93	71	23.7%	1,755	1,830	75
T	TALLOW	90	77	14.4%	1,824	1,928	104
YB	YELLOW GREASE - FUEL OIL BLEND	89	80	10.1%	1,773	1,811	38
CB	CHICKEN FAT - FUEL OIL BLEND	99	90	9.1%	1,756	1,843	87
F	No. 2 FUEL OIL	98	91	7.1%	1,836	1,901	65
TB	TALLOW - FUEL OIL BLEND	98	95	3.1%	1,714	1,790	76
WB	CHOICE WHITE GREASE - FUEL OIL BLEND	101	97	4.0%	1,860	1,954	94
W	CHOICE WHITE GREASE	108	105	2.8%	1,855	1,886	31
С	CHICKEN FAT	118	112	5.1%	1.776	n.a.	n.a.

Fig. 15. Legend

- T, CB and W w/o FGR. 2% error assumed for all of the other cases.

Fuel	Legend	SO ₂ emissions, ppm			
	요즘 교회 계속이 시작하는 모든 그 없다고 그렇	wlo FGR	w. FGR	delta	
Ν	NATURAL GAS	0	0	0	
Υ	YELLOW GREASE	0	1	1	
W	CHOICE WHITE GREASE	0	0	0	
С	CHICKEN FAT	0	0	0	
T	TALLOW	1	4	3	
ΥB	YELLOW GREASE - FUEL OIL BLEND	20	48	28	
TB	TALLOW - FUEL OIL BLEND	59	69	10	
WB	CHOICE WHITE GREASE - FUEL OIL BLEND	69	109	40	
СВ	CHICKEN FAT - FUEL OIL BLEND	72	80	8	
F	No. 2 FUEL OIL	87	127	40	

Fig. 16. Legend

Fig. 17, CO₂ Emissions

- 1) All tests were conducted at maximum boiler load.
- 2) Error bars show sld. error (n=2 or greater) calculated for cases: CB, F, and W with FGR, and T and W w/o FGR.
- 3) 2% error assumed for all of the other cases.

Fuel	Legend	CO ₂ emissions, %			
	1 - 항공항 등 하는 사람들은 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	w/o FGR	w. FGR	delta	
W	CHOICE WHITE GREASE	6.9	7.5	0.6	
CB	CHICKEN FAT - FUEL OIL BLEND	7.0	8.0	1.0	
T	TALLOW	7.1	8.2	1.1	
С	CHICKEN FAT	7.3	7.9	0.6	
WB	CHOICE WHITE GREASE - FUEL OIL BLEND	7.3	8.3	1.0	
Y	YELLOW GREASE	7.6	7.8	0.2	
TB	TALLOW - FUEL OIL BLEND	7.7	8.1	0.4	
YB	YELLOW GREASE - FUEL OIL BLEND	7.7	8.5	0.8	
N	NATURAL GAS	9.0	10.0	1.0	
F	No. 2 FUEL OIL	12.6	13.5	0.9	

Fig. 17. Legend

Legend	Combustibles in Flue Gas, %			
	w/o FGR	w. FGR	delta	
CHICKEN FAT	0.14%	0.23%	0.09%	
NATURAL GAS	0.23%	0.31%	0.08%	
TALLOW - FUEL OIL BLEND	0.23%	0.31%	0.08%	
CHOICE WHITE GREASE - FUEL OIL BLEND	0.23%	0.31%	0.08%	
YELLOW GREASE	0.23%	0.16%	-0.07%	
CHICKEN FAT - FUEL OIL BLEND	0.26%	0.19%	-0.07%	
TALLOW	0.28%	0.31%	0.03%	
No. 2 FUEL OIL	0.31%	0.31%	0.00%	
CHOICE WHITE GREASE	0.31%	0.23%	-0.08%	
YELLOW GREASE - FUEL OIL BLEND	0.31%	0.31%	0.00%	

Fig. 19. Legend

5.3. Odor Sampling

At no time during the demonstration program did the test team receive any complaints about odor originating from the steam plant. Test team members, BAE faculty and staff associated with the project, and the steam plant personnel (10 individuals, in total) monitored the campus for odor and recorded their findings at least twice for each test series. Odor was monitored (36) times throughout the demonstration program. Each odor test began at the steam plant; and, if the wind speed exceeded 1 to 2 mph, was repeated again 0.5 to 1.0 miles down wind of the steam plant. A check of the UGA campus weather website preceding each test confirmed the wind direction and velocity. All odor testers were asked to verify that they were not suffering from any nasal congestion.

6. CONCLUSIONS

Fats and greases were demonstrated as industrial boiler fuels. These biofuels easily and economically displace No. 2 fuel oil using the same boiler operating procedures as fuel oil without any modifications to internal boiler combustion equipment. The biofuels need to be kept warm during cold weather in order to flow through piping and equipment. When heated to about 160° F. biofuels are easily atomized and ignited. Construction costs for the pump, heat exchanger, instruments, piping, valves, fittings, and electrical system for a system to maintain the 160° F. temperature and to transfer fuel from storage to the boiler was less than \$31,000. This total does not include the cost of engineering or the procurement cost for the heat exchanger. Extra costs would be incurred if separate storage tanks were needed for biofuel storage. Research should be accomplished focusing on the issues associated with using existing No. 2 fuel oil storage tanks for the storage of biofuel and biofuel blends.

Air emissions from the combustion of the biofuel oils met or exceeded state and federal air quality permit requirements for The University of Georgia. Nitrogen oxides and particulate emissions were comparable to emissions from the combustion of No. 2 fuel oil, Table 4. Sulfur dioxide emissions and deposits on boiler tubes were similar to those encountered when burning natural gas. Biofuels also have low carbon monoxide emissions. The fuel nozzle used in the UGA boiler was a 1950's design and no special procedures were used to minimize emissions through nozzle placement. Flue gas recirculation (FGR) was tested with 7% to 10% of flue gas being recirculated. FGR did not significantly increase boiler efficiency but did significantly reduce NO_x emissions compared to tests without FGR according to a Students t-test at the $\alpha = 0.05$ significance level. NO_x emissions were not reduced enough to meet regulations for new sources and for non-attainment areas. Additional testing is required using low NO_x nozzle designs and other methods for minimizing emissions. When the boiler was operated at half load, boiler efficiency was significantly greater for a blend of 33% tallow with 77% #2 fuel oil than when using 100% #2 fuel oil ($\alpha = 0.05$).

The biofuel oils have high heating value; low amounts of ash, nitrogen, and moisture; and negligible amounts of sulfur. Heating values of the biofuel oil blends tested are within 95% of the heating value of No. 2 fuel oil. The specific gravity of the biofuels is close to that of No. 2 fuel oil. The biofuels are more viscous than No. 2 fuel oil, but much less viscous than No. 6 fuel oil. However, a blend of 30% biofuel with No. 2 fuel oil has a viscosity that is close to that of No. 2 fuel oil. Boiler efficiency while burning biofuel oil is comparable to that of No. 2 fuel oil.

Table 5, Comparison of UGA Test Emissions to US EPA Criteria Pollutant Emission Factors

Fuel & Firing Condition	NO _x lb./MMBtu	Filterable PM, lb./MMBtu	CO, lb./MMBtu	SO ₂ , lb./MMBtu ⁵
UGA Boiler No. 2 Emissions, Tested at Max. Steam	Load 1:			
Chicken Fat, controlled with FGR ⁷	0.156	0.077	0.008	0.000
Yellow Grease, controlled with FGR 7	0.097	0.009	0.016	0.001
Choice White Grease, controlled with FGR 7	0.150	0.038	0.014	0.000
Tallow, controlled with FGR 7	0.101	0.014	0.018	0.007
No. 2 Fuel Oil, controlled with FGR 7	0.116	0.010	0.004	0.219
UGA Boiler No. 2 Emissions, Estimated at Max. Sto	eam Load ² :			
Chicken Fat, uncontrolled (w/o LNB or FGR)	0.164	not available	0.000	0.000
Yellow Grease, uncontrolled (w/o LNB or FGR)	0.127	not available	0.012	0.000
Choice White Grease, uncontrolled (w/o LNB or FGR)		not available	0.014	0.000
Tallow, uncontrolled (w/o LNB or FGR)	0.118	not available	0.012	0.002
No. 2 Fuel Oil, uncontrolled (w/o LNB or FGR)	0.125	not available	0.003	0.150
Chicken Fat, blended ⁶ , uncontrolled	0.137	not available	0.008	0.124
Yellow Grease, blended ⁶ , uncontrolled	0.122	not available	not available	0.034
Choice White Grease, blended ⁶ , uncontrolled	0.144	not available	0.012	0.119
Tallow, blended ⁶ , uncontrolled	0.129	not available	0.008	0.102
Chicken Fat, blended ⁶ , controlled w. FGR ⁷	0.125	not available	0.014	0.138
Yellow Grease, blended ⁶ , controlled w. FGR ⁷	0.109	not available	not available	0.083
Choice White Grease, blended ⁶ , controlled w. FGR ⁷	0.138	not available	0.033	0.188
Tallow, blended ⁶ , controlled w. FGR ⁷	0.125	not available	0.008	0.119
US EPA Emission Factors for Criteria Pollutants (I	poilers > 100 MM	 Btu/hr heat input) ^{3, 4} :	
No. 2 Fuel Oil fired, controlled with FGR	0.071	0.014	0.036	0.393
Natural Gas fired, controlled with FGR	0.098	0.002	0.082	0.000
No. 2 Fuel Oil fired, uncontrolled (w/o LNB or FGR)	0.171	0.014	0.036	0.393
Natural Gas fired, uncontrolled (w/o LNB or FGR)	0.186	0.002	0.082	0.000

¹⁾ Advanced Air Consultants, Murrayville, GA

Additional research is needed to understand:

- 1. What is the effect of biofuel/fuel oil blend proportions on viscosity and miscibility? What blend proportions maintain fluidity (low viscosity) over the range of ambient storage temperatures (say, 32 to 100° F.) typical in industrial applications? What is the minimum amount of agitation required?
- 2. What are minimum required specifications for fats and greases used as biofuel? What are the requirements for solids removal (screening), MIU (moisture, insolubles, unsaponifiables), Ultimate analysis (C, H, N, S), energy content, specific gravity, viscosity, etc.? How shall biofuels be specified for environmental permitting?

²⁾ Emissions data have been estimated using the test results from Advanced Air Consultants and ENERAC 3000E testing

³⁾ US EPA Fifth Edition 1995, with Supplements: A (1996), B (1996), D (1998), and E (1998)

⁴⁾ The UGA No. 2 Boiler Operating Permit is based upon a 130 MMBtu/hr heat input.

⁵⁾ SO2 emissions data have been reviewed in report Section 5.5, Discussion.

⁶⁾ All blended fuels consist of 33% biofuel and 67% No. 2 fuel oil.

⁷⁾ The FGR system was limited to 7% - 10% flue gas recirculation, see report Section 3.4.

Potentially Applicable Regulations

Potentially Applicable Requirements

I. Federal Regulatory Requirements

Emissions Unit	Citation under Federal Regulations	Applicable Requirement	Description of Requirements or Standards	
Facility Wide	40 CFR Part 52	No	Approval and Promulgation of Implementation Plans; Rules for Prevention of Significant Deterioration. The Idaho Falls facility is not a major source with respect to the Prevention of Significant Deterioration program. Facility-wide emissions are less than the applicability threshold.	
Affected Facilities: Boiler No. 1 & Boiler No. 2	40 CFR Part 60 Subparts D, Da, Db, Dc	No	Standards of Performance for New Stationary Sources. Due to the size of the boilers and the dates of construction/modification, the Idaho Falls facility boilers are not subject to NSPS requirements.	
Affected Facilities: Storage Tanks	40 CFR Part 60 Subparts K, Ka, Kb	No	Standards of Performance for New Stationary Sources. The large storage tank is potentially subject to NSPS Subpart K. However, it is exempt from any Subpart K requirements. Due to the size of the small tank and the date of construction/modification, the small tank is not subject to NSPS requirements.	
Facility Wide	40 CFR Part 61, Subpart M	Yes	National Emission Standards for Hazardous Air Pollutants, Asbestos.	
Affected Sources	40 CFR Part 63, Subpart A	No	National Emission Standards for Hazardous Air Pollutants for Source Categories. • The Idaho Falls facility is not a major source of HAP and as such the NESHAP program does not apply to this facility.	
Affected Sources	40 CFR Part 64	No	Compliance Assurance Monitoring • The Idaho Falls facility is not subject to the requirements of CAM because the facility is not a major source with respect to the Title V operating permit program.	
Facility Wide	40 CFR Part 68	No	Chemical Accident Prevention Provisions • The Idaho Falls facility is not currently subject to this regulatory program. Per 68.10(a), the facility must comply with the Provisions' requirements as soon as the quantity of a regulated substance is above its threshold quantity in a process.	
Facility Wide	40 CFR Part 70	No	State Operating Permit Program. • The Idaho Falls facility is not a major source with respect to Title V operating permit program thresholds.	
Facility Wide	40 CFR Part 82	Yes	Chlorofluorocarbon Regulations.	

Potentially Applicable Requirements

II. Idaho Regulatory Requirements

Emission Unit	Citation under IDAPA 58.01.01	Applicable Requirement	Description of Requirements or Standards	
Facility Wide	130	Yes	STARTUP, SHUTDOWN, SCHEDULED MAINTENANCE, SAFETY MEASURES, UPSET AND BREAKDOWN	
Facility Wide	131	Yes	EXCESS EMISSIONS • Applicability.	
Facility Wide	132	Yes	CORRECTION OF CONDITION • Excess emission events must be corrected with all practical speed.	
Facility Wide	133	Yes	STARTUP, SHUTDOWN AND SCHEDULED MAINTENANCE REQUIREMENTS • Prescribes procedures for where startup, shutdown, or scheduled maintenance is expected to result in an excess emissions event.	
Facility Wide	134	Yes	UPSET, BREAKDOWN AND SAFETY REQUIREMENTS • Prescribes procedures for when upset or breakdown or the initiation of safety measures is expected to result in an excess emissions event.	
Facility Wide	135	Yes	EXCESS EMISSIONS REPORTS Written reports for each excess emissions event must be submitted to the Department within 15 days after the beginning of the event.	
Facility Wide	136	Yes	EXCESS EMISSIONS RECORDS • Records of excess emissions must be maintained for 5 years.	
Facility Wide	157	Yes	TEST METHODS AND PROCEDURES • Establishes procedures and requirements for test methods and results.	
Facility Wide	161	Yes	TOXIC SUBSTANCES • Toxic contaminants shall not be emitted as to injure or unreasonably affect human or animal life or vegetation.	
Facility Wide	200	Yes	PROCEDURES AND REQUIREMENTS FOR PERMITS TO CONSTRUCT • Although the Idaho Falls facility is not requesting a PTC with this application, the facility must comply with the PTC rules when adding or modifying an air pollution source.	
Facility Wide	201	Yes	PERMIT TO CONSTRUCT REQUIRED	
Facility Wide	202	Yes	APPLICATION PROCEDURES	
Facility Wide	203	Yes	PERMIT REQUIREMENTS FOR NEW AND MODIFIED STATIONARY SOURCES	
Facility Wide	210	Yes	DEMONSTRATION OF PRECONSTRUCTION COMPLIANCE WITH TOXIC STANDARDS	
Facility Wide	211	Yes	CONDITIONS FOR PERMITS TO CONSTRUCT	
Facility Wide	212	Yes	OBLIGATION TO COMPLY	
Facility Wide	213	Yes	PRE-PERMIT CONSTRUCTION	
Facility Wide	214	No	DEMONSTRATION OF PRECONSTRUCTION COMPLIANCE FOR NEW AND RECONSTRUCTED MAJOR SOURCES OF HAZARDOUS AIR POLLUTANTS • The facility is not a major source of HAP.	

Emission Unit	Citation under IDAPA 58.01.01	Applicable Requirement	Description of Requirements or Standards	
Facility Wide	300	No	PROCEDURES AND REQUIREMENTS FOR TIER I OPERATING PERMITS	
,			 The Idaho Falls facility is not a major source with respect to the Tier I operating permit program. Table 3-2 presents the facility-wide potential to emit. 	
Facility Wide	301	No	REQUIREMENT TO OBTAIN TIER I OPERATING PERMIT	
Facility Wide	311	No	STANDARD PERMIT APPLICATIONS	
Facility Wide	312	No	DUTY TO APPLY	
Facility Wide	313	No	TIMELY APPLICATION	
Facility Wide	314	No	REQUIRED STANDARD APPLICATION FORM AND REQUIRED INFORMATION	
Facility Wide	315	No	DUTY TO SUPPLEMENT OR CORRECT APPLICATION	
Facility Wide	317	No	INSIGNIFICANT ACTIVITIES	
Facility Wide	368	No	EXPIRATION OF PRECEDING PERMITS	
Facility Wide	387	No	REGISTRATION AND REGISTRATION FEES	
Facility Wide	388	No	APPLICABILITY	
Facility Wide	389	No	REGISTRATION INFORMATION	
Facility Wide	390	No	REGISTRATION FEE	
Facility Wide	391	No	REQUEST FOR INFORMATION	
Facility Wide	392	No	REGISTRATION FEE ASSESSMENT	
Facility Wide	393	No	PAYMENT OF TIER I REGISTRATION FEE	
Facility Wide	400	Yes	PROCEDURES AND REQUIREMENTS FOR TIER II OPERATING PERMITS	
Facility Wide	401	Yes	TIER II OPERATING PERMIT In accordance with the Consent Order, the Idaho Falls facility is submitting a Tier II application. As can be seen in Table 3-2, facility emissions are less than 100 tpy; thus, a Tier I permit is not required	
Facility Wide	402	Yes	APPLICATION PROCEDURES	
Facility Wide	403	Yes	PERMIT REQUIREMENTS FOR TIER II SOURCES	
Facility Wide	404	Yes	PROCEDURE FOR ISSUING PERMITS	
Facility Wide	405	Yes	CONDITIONS FOR TIER II OPERATING PERMITS	
Facility Wide	406	Yes	OBLIGATION TO COMPLY	
Facility Wide	407	Yes	TIER II OPERATING PERMIT PROCESSING FEE	
Facility Wide	408	Yes	PAYMENT OF TIER II OPERATING PERMIT PROCESSING FEE	
Facility Wide	577	Yes	AMBIENT AIR QUALITY STANDARDS FOR SPECIFIC POLLUTANTS	
Boilers, Bin Dryers, and Air Makeup Fan	585	Yes	TOXIC AIR POLLUTANTS NON-CARCINOGENIC INCREMENTS	
Units			 This rule applies during the 'construction' permitting process. The Idaho Falls facility will demonstrate compliance with this rule in any subsequent PTC applications. 	
Boilers, Bin Dryers, and Air Makeup Fan Units	586	Yes	TOXIC AIR POLLUTANTS CARCINOGENIC INCREMENTS • This rule applies during the 'construction' permitting process. The Idaho Falls facility will demonstrate compliance with this rule in any subsequent PTC applications.	
Boiler No. 1 & Boiler No. 2	590	No	NEW SOURCE PERFORMANCE STANDARDS • Due to the size of the boilers and the dates of construction/modification, the Idaho Falls facility boilers are not subject to NSPS requirements.	

Emission Unit	Citation under IDAPA 58.01.01	Applicable Requirement	Description of Requirements or Standards		
Storage Tanks	590	No	NEW SOURCE PERFORMANCE STANDARDS The large storage tank is potentially subject to NSPS Subpart K. However, it is exempt from any Subpart K requirements. Due to the size of the small tank and the date of construction/modification, the small tank is not subject to NSPS requirements.		
Facility Wide	591	No	NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS The Idaho Falls facility is not a major source of HAP and as such the NESHAP program does not apply to this facility.		
Facility Wide	600	Yes	RULES FOR CONTROL OF OPEN BURNING		
Facility Wide except for the Air Makeup Fan Units and Bin Dryers because they do not vent directly to atmosphere.	625	Yes	 VISIBLE EMISSIONS A person shall not emit an air pollutant from any point of emission for a period or periods aggregating more that 3 minutes in any 60-minute period that is greater than 20% opacity. Prescribes test methods and procedures for performance testing. 		
Facility Wide	650	Yes	RULES FOR CONTROL OF FUGITIVE DUST		
Facility Wide	651	Yes	GENERAL RULES Reasonable precautions shall be taken to prevent particulate matter from becoming airborne.		
Boilers, Bin Dryers, and Air Makeup Fan Units	676 & 677	Yes	 FUEL BURNING EQUIPMENT – PARTICULATE MATTER. STANDARDS FOR NEW SOURCES & STANDARDS FOR MINOR AND EXISTING SOURCES When firing gaseous fuel, combustion equipment is limited to 0.15 gr/dscf particulate matter emissions corrected to 3% oxygen. When firing liquid fuel, combustion equipment is limited to 0.5 gr/dscf particulate matter emissions corrected to 3% oxygen. 		
Vaculifts, Flaker Drum Dryer 3	701	Yes	PARTICULATE MATTER – NEW EQUIPMENT PROCESS WEIGHT LIMITATIONS • These sources were all installed at the Idaho Falls facility after October 1, 1979, the applicability date for this section. As such, the PM limits established in this section apply to these sources.		
Proctors, Flaker Drum Dryers 1 & 2	702	Yes	PARTICULATE MATTER – EXISTING EQUIPMENT PROCESS WEIGHT LIMITATIONS • These sources were all installed at the Idaho Falls facility before October 1, 1979, the applicability date for this section. As such, the PM limits established in this section apply to these sources.		
Boiler No. 1	728	Yes	RULES FOR SULFUR CONTENT OF FUELS: DISTILLATE FUEL OIL		
Facility Wide	776	Yes	GENERAL RULES Odorous gases, liquids or solids shall not be emitted as to cause air pollution.		

APPENDIX E Dispersion Modeling Protocol

Idaho Fresh-Pak, Inc. Tier II Operating Permit Application

Modeling Protocol Idaho Falls, Idaho

Prepared for:

Idaho Fresh-Pak, Inc. 2177 W 49th S Idaho Falls, ID 83402

June 2007

Project No. 011010.000.0

Idaho Fresh-Pak, Inc. Tier II Operating Permit Application

Modeling Protocol Idaho Falls, Idaho

Prepared for:

Idaho Fresh-Pak, Inc.

2177 W 49th S Idaho Falls, ID 83402

Prepared by:

Geomatrix Consultants, Inc.

3500 188th Street SW, Suite 600 Lynnwood, WA 98037

June 2007

Project No. 011010.000.0

TABLE OF CONTENTS

			Page					
1.0	PROJ	ECT DESCRIPTION AND PURPOSE OF MODELING	1					
2.0	DESC	CRIPTION OF EMISSION QUANTITIES	1					
3.0	MODELING APPLICABILITY ASSESSMENT2							
4.0	2							
	4.1	Model Used						
	4.2	CRITERIA POLLUTANT MODELING METHODOLOGY						
5.0		DEL INPUT DATA						
	5.1 5.2	METEOROLOGICAL DATA EMISSION RELEASE PARAMETERS						
	5.3	ELEVATION DATA						
	5.4	Modeling Results						
Table	1	Point Source and Volume Source Estimated Release Parameters TABLE OF FIGURES						
Figure	: 1	Site Location Map & Local Terrain						
Figure	2	Windrose for INEEL Idaho Falls Site, 15m Level, 2000-2004						
Figure	3	AERMET Idaho Falls INEEL Site Land-Use Analysis						
Figure	4	Preliminary Facility Site Plan						
Figure	5	Modeling Receptor Locations						

i

MODELING PROTOCOL

Idaho Fresh-Pak Tier II Operating Permit Application Idaho Falls, Idaho

1.0 PROJECT DESCRIPTION AND PURPOSE OF MODELING

Idaho Fresh-Pak, Inc. (Fresh-Pak) owns and operates a dehydrated potato production facility in Bonneville County, approximately four kilometers north of Idaho Falls, Idaho (Idaho Falls facility). A site location map can be found in Figure 1. The facility currently operates several potato processing lines, including Flaker lines and Slice and Dice lines. Two boilers provide process steam for the Idaho Falls facility. Fresh-Pak intends to submit a Tier II Operating Permit application for approval to Idaho Department of Environmental Quality (DEQ).

Fresh-Pak has retained Geomatrix Consultants (Geomatrix) to complete an air quality dispersion modeling analysis as part of the permit application. As recommended in DEQ guidance, this modeling protocol is being submitted to present an overview of a proposed modeling methodology that would be used to generate air quality impact predictions for the permit application.

2.0 DESCRIPTION OF EMISSION QUANTITIES

The Idaho Falls facility has a total of 17 emission sources, including: two boilers, three flaker drum dryers, three Proctor belt dryers, two bin dryers, three Air Make-up Units (AMUs), and four Vacu-lifts (a brand name of cyclone). A Preliminary Facility Site Plan is included in Figure 4. The bin dryers and AMUs all vent inside building #3 then the exhausts exit building #3 via doors, windows, and vents. To accurately represent the emissions in the dispersion model, Geomatrix combined their emissions into a single volume source the size of the building #3.

The main boiler (rated at 61.6 million British thermal units per hour [MMBtu/hr]) at the Idaho Falls facility will fire natural gas, diesel fuel, and biofuels. The second boiler (rated at 26.7 MMBtu/hr) will fire natural gas, diesel fuel, and biofuels, as well. Steam from the two boilers

is used by various facility process units, including heating the three flaker drum dryers and for the three Proctor belt dryers. The two bin dryers and the three AMUs fire natural gas.

Geomatrix will calculate potential emission rates using available source test data, the Environmental Protection Agency's (EPA) AP-42 reference document, and other related production rates and maximum operating schedules (8,760 hours/year).

3.0 MODELING APPLICABILITY ASSESSMENT

For the purposes of this modeling analysis, Geomatrix will model the potential criteria pollutant emissions from the 17 emission sources at the Idaho Falls facility. Bonneville County is currently in attainment for all criteria pollutants.

4.0 MODELING ANALYSES METHODOLOGY

4.1 MODEL USED

Geomatrix reviewed regulatory modeling techniques to select the most appropriate air quality dispersion model to simulate dispersion of air pollutants emitted by the Idaho Falls facility. Building downwash and exhaust plumes that impact complex terrain are issues that influence the selection of regulatory modeling tools. At the Idaho Falls facility, facility buildings will potentially create building downwash from facility sources. Local terrain is presented in Figure 1.

As of December 9, 2005, AERMOD replaced ISCST3 as the model recommended by the EPA *Guideline on Air Quality Models* (codified as Appendix W to 40 CFR Part 51, referred to hereafter as the Guideline) as the preferred dispersion model for areas containing both simple and complex terrain. AERMOD also includes the PRIME downwash algorithms to estimate effects of surrounding buildings on the dispersion of plumes. Therefore, this analysis will be conducted using the current AERMOD dispersion model (version 07026).

4.2 CRITERIA POLLUTANT MODELING METHODOLOGY

Potential facility emissions will be modeled using AERMOD, and model-predicted concentrations will then be added to appropriate background pollutant concentrations to account for other sources contributing to existing pollutant concentrations. The criteria pollutant concentrations (background plus modeled) will be compared against the National

Ambient Air Quality Standards (NAAQS). Geomatrix will use background concentrations from the *IDEQ Background Concentrations for Use in New Source Review Dispersion Modeling* memo (March 14, 2003), for Rural Agricultural Regional Category.

5.0 MODEL INPUT DATA

AERMOD will be applied to potential criteria pollutant emission rates using the regulatory defaults in addition to the options and data discussed in this section.

5.1 METEOROLOGICAL DATA

Geomatrix has conducted a survey of available meteorological data for use in the simulations. A representative five-year meteorological data set will be prepared using available surface and upper air meteorological data. Surface meteorology from the Idaho National Laboratory (INEEL) station in Idaho Falls, Idaho (approximately 5 kilometers south of the facility) with missing data supplemented by surface observations from the INEEL station in Roberts, Idaho (approximately 20 kilometers northwest of the facility) and National Weather Service (NWS) surface observations from Idaho Falls Fanning Field (approximately 4 kilometers southwest of the facility). NWS upper air data from the Boise Airport (approximately 330 kilometers west of the facility) are also included for the five-year meteorological data set. According to the Guideline, five years of representative meteorological data are considered adequate for dispersion modeling applications.

The Idaho Falls facility is located in the Snake River Valley. The Snake River Valley directly impacts the surface meteorological data, especially wind speed and direction. Due to the proximity of the Idaho Falls surface station and the location of the station within the Snake River Valley, the surface meteorological data is very representative of the Idaho Falls facility. A wind rose presenting five years of surface wind speed and wind direction from the Idaho Falls station is shown in Figure 2. The wind rose shows predominantly high winds from the southwest and south directions following the Snake River valley and slower winds from the north direction. The average wind speed is 3.24 meters per second (m/s); and calm conditions occur less than 0.07 percent of the time.

The Boise airport was chosen as the regional upper air station because the Boise data were thought to be the most representative of the Idaho Falls facility. The Boise airport is also

located in the Snake River Valley and should consequently represent appropriate upper air conditions for the Idaho Falls facility.

Additional meteorological variables and geophysical parameters are required for use in the AERMOD dispersion modeling analysis to estimate the surface energy fluxes and construct boundary layer profiles. Surface characteristics including the surface roughness length, the albedo, and the Bowen ratio will be assigned on a sector-by-sector basis using land-use data within three kilometers of the Idaho Falls meteorological site. The USGS 1992 National Land Cover land-use data set (NLCD92) to be used in the analysis has a 30-meter mesh size and over 30 land-use categories. The NLCD92 land-use designations were compared to a current aerial photograph of the three kilometer area surrounding the Idaho Falls meteorological site and the NLCD92 data are appropriate for land-use determinations.

The NLCD92 data will be processed using the utilities that accompany the CALPUFF modeling system. Land-use will be characterized using 12 sectors surrounding the facility. Within each sector, a weighted average surface roughness length, albedo, and Bowen ratio will be calculated from the characteristics recommended for each land use by the CALPUFF utility program MAKEGEO. Arithmetic averages will be used for the albedo and Bowen ratio, while a geometric average will be used for surface roughness length. This land-use analysis and corresponding surface roughness lengths, albedo, and Bowen ratios are shown in Figure 3.

The EPA meteorological program AERMET (Version 06341) will be used to combine the hourly surface meteorological observations with twice daily upper air soundings from the Boise airport and derive the necessary meteorological variables for AERMOD. The upper air data will be used to estimate the temperature lapse rate aloft and subsequently be used by AERMET to predict the development of the mixed layer height. The Bulk-Richardson option was used to estimate dispersion variables and surface energy fluxes during nocturnal periods, while solar radiation and wind speed are used by AERMET to estimate these same variables during the day.

5.2 EMISSION RELEASE PARAMETERS

Figure 4 shows the site plan of the Idaho Falls facility with estimated locations of the 12 emission point stacks and one volume source as well as significant structures that could

4

¹ The USGS NLCD92 data set is described and can be accessed at http://landcover.usgs.gov/natllandcover.php

potentially influence downwash from the stacks. Table 1 summarizes the preliminary release parameters that will be used to represent the facility stacks in the modeling analysis. The final stack parameters will be reported in the final modeling analysis. Horizontal stack releases are given an exit velocity of 0.001 m/s to represent no plume rise due to momentum and an exit diameter of 0.001 m to prevent the effects of stack-tip downwash on a horizontal stack. Volume source release parameters were calculated based on guidance from the AERMOD manual.²

The existing building dimensions and facility configuration will be provided to AERMOD to assess potential downwash effects. Wind-direction-specific building profiles will be prepared for the modeling using the EPA's Building Profile Input Program for the PRIME algorithm (BPIP PRIME). The facility layout provided by Fresh-Pak and building elevations will be used to prepare data for BPIP PRIME, which provides the necessary input data for AERMOD.

5.3 ELEVATION DATA

Terrain elevations for receptors and emission sources will be prepared using digital elevation models (DEMs) developed by the United States Geological Survey of nine 7.5-minute quadrangles obtained from the internet (http://www.mapmart.com): Ammon, Idaho Falls North, Idaho Falls South, Lewisville, Rigby, Roberts, Shattuck Butte, Ucon, and Woodville. These data have a horizontal spatial resolution of 10 meters (m). The 10-kilometer (km) square simulation domain that was used to assess the Idaho Fall facility potential emission impacts is shown in Figure 1.

For the dispersion modeling analysis, three nested receptor grids, each centered on the facility, will be developed: an outer grid to the maximum extent of the domain with 250-meter spacing, a 5-km by 5-km nested grid with 100-meter spacing, and a 1-km by 1-km receptor grid with 25-m spacing. Receptors were also located at 10-m intervals along the facility fenceline. The base elevation and hill height scale for each receptor were determined using the EPA's terrain processor, AERMAP (Version 06341). AERMAP generates a receptor output file formatted for use by AERMOD. The modeling receptor grids are shown in Figure 5.

² Table 3-1. Summary of Suggested Procedures for Estimating Initial Lateral Dimensions and Initial Vertical Dimensions for Volume and Line Sources. User's Guide for the AMS/EPA Regulatory Model – AERMOD. EPA-454/B-03-001 (September 2004).

5.4 MODELING RESULTS

Geomatrix will apply the AERMOD model using the Idaho Falls facility potential criteria pollutant emission rates and compare the sum of modeling results and background concentrations to the NAAQS. The 6th highest 24-hour average PM10 concentration over the five years of modeling will be compared to the applicable NAAQS. For all other criteria pollutants and averaging periods, the highest, 1st high criteria pollutant concentrations will be added to the background and compared to the NAAQS.

TABLES

TABLE 1
POINT SOURCE AND VOLUME SOURCE ESTIMATED RELEASE PARAMETERS

Tier II Operating Permit Application Idaho Falls, Idaho

Source	Stack Exit Direction	Height (ft)	Actual Inside Diameter ¹ (ft)	Model Stack Diameter ² (m)	Exit Velocity ³ (m/s)	Temperature (°F)
Boiler #1	Vertical	39	3.42	1.04	8.44	390
Boiler #2	Vertical	39	2.58	0.79	5.70	390
Proctor Dryer #1	Horizontal	28	3.0	0.001	0.001	180
Proctor Dryer #2	Horizontal	28	3.0	0.001	0.001	180
Proctor Dryer #3	Horizontal	28	3.0	0.001	0.001	180
Flaker Drum Dryer #1	Vertical	33	3.75	1.14	39.71	110
Flaker Drum Dryer #2	Vertical	34	3.75	1.14	39.71	110
Flaker Drum Dryer #3	Vertical	34	3.75	1.14	35.87	109
Flaker Lines 1 & 2 Vaculift	Horizontal	30	0.8	0.001	0.001	110
Flaker Line 3 Vaculift	Horizontal	30	0.8	0.001	0.001	110
Bagroom Vaculift	Horizontal	30	0.88	0.001	0.001	110
Canline Vaculift	Horizontal	28	0.8	0.001	0.001	Ambient
Volume Source		Height ⁵ (ft)	Initial Sigma Y ⁵ (ft)		Initial Sigma Z ⁵ (ft)	
Plant ⁴		12	53.31		11.16	

¹ The Vaculift stacks have rectangular cross-sections; the diameters shown are for a circular cross-section with an equivalent area.

² For all source release points that are oriented horizontally, the exit diameters are set to 0.001 meters to prevent stack tip downwash effects.

³ For all source release points that are oriented horizontally, the exit velocities are set to 0.001 m/s to eliminate plume rise due to exhaust momentum.

⁴ The Plant volume source represents the Bin Dryers 1 and 2; the Waste Plant AMU; the Flaker Room AMU; and the Bag Room AMU.

The volume source stack height is half of the Main Building height. The initial Sigma Y value is the Building length divided by 4.3, and the initial Sigma Z value is the Building height divided by 2.15.

FIGURES

WINDROSE FOR INEEL IDAHO FALLS SITE, 15M LEVEL, 2000-2004 Tier II Operating Permit Application Idaho Falls, Idaho Project No. 11010 Figure

2

AERMET IDAHO FALLS INEEL SITE LAND-USE ANALYSIS
Tier II Operating Permit Application
Idaho Falls, Idaho

11010

Figure **3**

1410 NORTH HILTON, BOISE, ID 83706 • (208) 373-0502

C. L. "BUTCH" OTTER, GOVERNOR TONI HARDESTY, DIRECTOR

June 28, 2007

Kyle Heitkamp Geomatrix Consultants Lynnwood, WA

RE: Modeling Protocol for the Idaho Fresh-Pak Facility Located in Idaho Falls, Idaho

Kyle:

DEQ received your dispersion modeling protocol on June 20, 2007. The modeling protocol was submitted on behalf of Idaho Fresh-Pak. The modeling protocol proposes methods and data for use in the ambient impact analyses of a Tier II Operating Permit application for their facility in Idaho Falls, Idaho.

The modeling protocol has been reviewed and DEQ has the following comments:

- Comment 1: The application should provide documentation and justification for stack parameters used in the modeling analyses, clearly showing how stack gas temperatures and flow rates were estimated. In most instances, applicants should use typical parameters, not maximum temperatures and flow rates.
- Comment 2: The proposed procedures for selecting surface characteristics to use in AERMET indicate a weighted geometric average will be used for surface roughness. Use of the geometric mean is not discussed in the AERMET users' manual. DEQ aggress that the geometric mean is probably more appropriate for evaluating a representative surface roughness because the values within a sector may vary over several orders of magnitude. However, please include more discussion in the submitted final modeling report that explains and justifies use of the geometric mean rather than the arithmetic mean.
- Comment 3: Please provide thorough documentation of the AERMET analyses such that
 the results can be duplicated. Provide all input and output files for AERMET and any
 other processor programs used.

DEQ's modeling staff considers the submitted dispersion modeling protocol, with resolution of the additional items noted above, to be approved. It should be noted, however, that the approval of this modeling protocol is not meant to imply approval of a completed dispersion modeling analysis. Please refer to the *State of Idaho Air Quality Modeling Guideline*, which is available on the Internet at http://www.deq.state.id.us/air/permits_forms/permitting/modeling_guideline.pdf, for further guidance.

To ensure a complete and timely review of the final analysis, our modeling staff requests that electronic copies of all modeling input and output files (including BPIP and AERMAP input and output files) are submitted with an analysis report. If DEQ provided model-ready meteorological data files, then these do not need to be resubmitted to DEQ with the application. If you have any further questions or comments, please contact me at (208) 373-0112.

Sincerely,

Kevin Schilling Stationary Source Air Modeling Coordinator Idaho Department of Environmental Quality 208 373-0112

APPENDIX F Modeling Analysis Compact Disk